微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > MCU和DSP > 数字电路中△I噪声的危害

数字电路中△I噪声的危害

时间:11-13 来源:电子技术应用 点击:

2电路内部噪声

在模拟电路中,外界噪声通常是关注的重点。而对于数字电路,则内部噪声最值得关注。一般来说,产生内部噪声源的原因包括地线噪声、电源线噪声、传输线(transimission line)反射、串扰(crosstalk)等,其中最重要的噪声源是地线噪声和电源线噪声。

2.1 地线噪声

由△I噪声产生过程的分析可知,负载电容CL在放电时引起电流尖峰脉冲,该电流尖峰脉冲流经接地线。由于接地线存在寄生电感,所以电流尖峰脉冲流经接地线时,便产生噪声电压,即地线噪声(接地线还有寄生电阻,但相对于寄生电感引起的噪声而言,其引起的噪声要小得多,可以不予考虑)。

实际上,由两个晶体管同时导通引起的电流尖峰脉冲也流经接地线,但由于相对于负载电容CL放电引起的电流尖峰脉冲而言,该电流尖峰脉冲要弱得多,所以在分析电流尖峰脉冲在接地线上引起的噪声时,该电流可以不予考虑。

为方便起见,在具体分析地线噪声的产生与危害时,可将逻辑电路等效为图3所示的形式。

当开关2 接通时,负载电容CL对地放电。随着上电压的下降,其存储的电荷流向地,在接地回路上形成一个电流尖峰脉冲,记作Idischarge。

随着放电电流建立然后衰减,这一电流变化通过接地引脚的电感起作用,在器件外的系统地平面与封装内的地之间感应产生了一个电压VGND,其大小为:

与满幅值的输出电压相比,VGND通常较小。它不会严重影响发送信号,但会严重干扰负载,影响对信号的接收。因为对接收电路而言,VGND脉冲就像是直接叠加在输入信号上的噪声。

以上是TTL电路的情况。虽然CMOS电路的拓扑(topology)结构不同,但噪声脉冲的概念是一样的。

如果同一芯片上的N个容性负载相应的N路输出同时转换,则会得到N倍的地电流,于是噪声脉冲的增大也接近N倍。

地线噪声可能破坏数字系统的正常工作。例如参考文献[4]中所述,一个TTL 八D触发器,由单一时钟输入,驱动一组32个存储器的芯片组。以每条输入线5pF负载电容计算,每条地址线的容性负载为160pF。分析可知,地线噪声可能引起双重触发(误触发)。然而,从外部观测时钟输入,显示的是一个完全干净的信号,错误只出现在器件封装内部。

测试表明,74HC174(四触发器)中单个触发器输出跳变引起噪声脉冲VGND大约为150mV,而在74F174上引起的噪声脉冲VGND是400mV。进一步分析可知,这样大的脉冲足以引起严重问题。

在工程实践中,可用下式估算噪声脉冲VGND的大小:

式中,tr(f)为逻辑器件的上升(或下降)时间(10%~90%转换时间),△V为转换电压。tr(f)和△V的大小取决于逻辑电路系列的性能指标,计算时取典型值。

实际上,这种地线噪声已成为现代数字系统中的主要噪声源之一,其危害往往严重而复杂。除了上面的示例外,边沿触发器的输入线(如复位和中断服务线)也特别容易受到地线噪声的影响。地线噪声引起的EMI辐射已成为一些数字电子产品不能通过相关的EMC强制测试认证的主要原因之一。

2.2 电源线噪声

由于电源分配网络有寄生电感和寄生电阻,因而当△I噪声电流流过时,便产生噪声电压(自感电压和欧姆电压降),即电源线噪声。

对数字IC而言,电源线噪声是电源噪声的主要来源。

电源线噪声会引起电源电压波动。电源电压波动带来的危害在本文的前面已讨论过,故不赘述。

在数字系统中,地线噪声的影响较电源线噪声的影响大。因为电源线噪声可以通过合理使用去耦电容器(decoupling capacitor)予以有效控制,而地线噪声无法通过去耦的方法来解决。

3 输出波形畸变和延时增加

3.1 输出波形畸变

TTL反相器负载电容CL的放电回路的等效电阻Req很小[1,2],这个回路就成为一个高Q值的RLC串联电路,容易产生振荡,引起逻辑门的输出波形畸变(振铃,ringing),甚至使输出电压从正电压变成负电压。实际上,负载电容CL充电时,充电回路也形成一个RLC串联谐振电路,但由于R4相当于串联谐振电路中的一个阻尼电阻(damping resistor),所以该串联谐振电路引起的振铃不严重,通常不予考虑。

振铃幅度足够大时,就会在负载电路(接收端)的输入端产生非法的电平过渡,使传送的信息出错,并可能出现影响逻辑设计的寄生逻辑状态。在有些情况下,振荡幅度可能超过电压的极限值,造成器件损坏[8]。

3.2 延时增加

△I噪声引起电源电压降低。由反相器的电路结构和工作原理可知,电源电压降低使反相器的驱动能力降低,进而使反相器的延时增加。

由于数字电路的输出端一般都有缓冲器,缓冲器与反相器的结构和性能基本相同,所以△I噪声将使数字电路的延时增加。而且,由于△I噪声在电源分配网络的不同位置引起的电源电压下降不同,所以对不同位置的缓冲器造成的延时增加也不同,这将使对数字电路的时序分析变得更加复杂。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top