微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > 从出生到未来,一文读懂高温超导的所有猫腻

从出生到未来,一文读懂高温超导的所有猫腻

时间:01-18 来源:科学大院 点击:

由于BCS理论在解释常规金属合金超导现象时取得了巨大成功,理论物理学家基于该理论框架,推断基于电子-声子相互作用配对凝聚的超导临界温度不可能高于40 开,即所谓麦克米兰极限。然而,实验物理学家并没有因此放弃寻找具有更高临界温度的超导材料。1986年,贝德诺尔茨(J. Bednorz,又译柏诺兹) 和米勒(K. Müller,又译缪勒)独辟蹊径,大胆地选择在一般认为导电性不好的陶瓷材料中去探索超导电性。他们在La-Ba-Cu-O体系中首次发现了超导电性的迹象,临界温度高达35 开,距离40开仅一步之遥,也超越了Nb3Ge中23.2 开的记录。这一发现引发了超导研究的热潮。1987年2月,美国休斯敦大学的朱经武、吴茂昆研究组和中国科学院物理研究所的赵忠贤研究团队分别独立发现在Y-Ba-Cu-O体系中,超导临界温度高达90开,超导研究首次成功突破了液氮温区(液氮的沸点为77 开)。之后,临界温度记录不断被刷新,如Tl-Ba-Ca-Cu-O体系中临界温度达到125开,Hg-Ba-Ca-Cu-O体系中则达到135开。1994年,朱经武研究组在高压条件下把Hg-Ba-Ca-Cu-O体系的临界温度提高到164开。相对于常规的金属和合金超导体(称为传统超导体),铜氧化物超导体具有较高的超导临界温度(突破麦克米兰极限),因此被称为高温超导体。

事实上,在铜氧化物高温超导体发现之前,人们就在许多材料中发现了特殊的超导电性,例如1973年发现的氧化物超导体Ba1-xKxBiO3,1978年发现的第一个重费米子超导体CeCu2Si2 ,1979年发现的第一个有机超导体(TMTSF)2PF6等。不仅如此,人们随后在更多的过渡金属氧化物材料中发现了超导现象,在稀土金属化合物中发现了更多的具有超重电子有效质量的重费米子超导体,在碱金属或碱土金属掺杂的C60、C6和多苯环有机材料中也发现了30 开以上的超导临界温度,在硼化物如YNi2B2C、MgB2和氮化物HfNCl材料中同样发现了20开~40开的临界温度。


超导体的各种应用

随着越来越多超导材料被发现,人们认识到BCS理论并非适应于所有超导体。尽管对于绝大部分超导材料,电子两两组合而成的库珀对仍然是承载超导电流的主体,但电子之间如何配对?它们的配对媒介是什么?电子对之间又如何一起凝聚到超导态?这一系列问题存在很大争议。尚不能用传统的BCS理论描述的超导材料也被称为非常规超导体,包括铜氧化物及其他多种氧化物超导体、重费米子超导体和有机超导体等。理解非常规超导体中超导电性的起源,不仅能为超导材料探索指明方向,而且还能刷新对凝聚态物理基本概念的理解,创建新的物理体系。然而,数十年过去了,非常规超导机理仍然是捉摸不透的谜。其中最主要的原因是这些材料内部电子和电子之间具有很强的相互作用,展现出的物理性质除了超导外,还有磁有序态和电荷有序态等复杂的集体量子行为。理解这些奇异且丰富的量子态,必须突破现有的凝聚态物理理论框架,这无疑是一个巨大的挑战!为建立非常规超导理论或高温超导理论,无数科学家为之付出了多年努力,至今虽小有进展,却仍感觉成功之日遥遥无期。

正在超导机理和应用研究逐渐步入瓶颈的时候,新的希望再次被点燃。2006年,日本的细野秀雄(H. Hosono)研究小组在探索新型透明导电材料时偶然发现LaFePO体系存在4开左右的超导电性。2008年2月23日,他们报道了氟掺杂的LaFeAsO体系中存在26开的超导电性。中国科学家在得知消息的第一时间合成该类材料并开展物性研究,其中中国科学院物理所和中国科技大学的研究人员采用稀土替代方法获得了一系列高质量样品,惊喜地发现其临界温度突破了40开,优化合成方式之后可以获得55开的高临界温度。新一代高温超导家族--铁基高温超导体就此诞生,这一次从新超导体发现到临界温度突破麦克米兰极限仅仅用了不到三个月的时间,新的超导记录几乎以天为单位在不断被刷新。

在随后几年里,新的铁砷化物和铁硒化物等铁基超导体系不断被发现,其中材料探索的主力军来自中、日、德、美、英等国。经过粗略估计,铁基超导家族成员数目可能有3000多种,真可谓是至今为止最庞大超导家族,而现今发现的已知体系不过是其中九牛一毛。由于多年在超导研究中的积累,铁基超导从发现到现在,无论在材料探索、物性研究、机理研究和应用研究等多个方面都进展迅速。从"铜器时代"到"铁器时代",超导研究在不断绽放更多的活力。

铁基高温超导:中国何以领先?

在铜氧化物高温超导中,中国科学家虽然在材料探索方面取得了少数几个世界领先的工作,然而在后续的物性研究和机理研究中,来自中国的声音还是不多

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top