微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 测试测量 > 实时频谱分析仪RF视图功能 应对跳频软件无线电挑战

实时频谱分析仪RF视图功能 应对跳频软件无线电挑战

时间:03-05 来源:微波射频社区 点击:

设计人员长久以来一直在设法改善无线电通信的性能和弹性,近年随着射频(RF)频谱变得更加拥挤,干扰更加普遍(图1)。目前设计人员使用几种技术,以确保能够在拥挤的无线电频谱上有效率地进行通信,其中主要的有软件无线电(SDR),该技术可让软件动态控制通信参数如使用的频带、调变类型、数据速率和跳频方式。

\

图1 跳频信号被大量的干扰塞住

须在常有恶意信号干扰的关键任务环境中执行的军用无线电,会经常采用SDR技术。该技术应用的机体大小可能相差悬殊,从轻巧的可携式机组,到安装在车辆和船舶上的平台,许多的商业应用如无线局域网络(WLAN)和3G手机通信,近来也都表明采用了许多原本用于国防电子产业的SDR技术。尽管SDR的应用和机体大小差异极大,但其都拥有一个共同的特点,即跳频。跳频可适用于模拟和数字无线电中,用来改善性能、避免被侦测,并减轻拥塞和干扰,如多重路径和衰减。

跳频会搭配编码方式使用,编码方式能够改善从干扰和衰减中还原的能力、将信息散布到广泛的频率范围中,让系统更加健全。如果某个频率拥塞,系统只会损失以该频率发射的信息,而非整个数据串。在这些情况下,可以使用交错和前向错误修正(FEC)以还原跳频受干扰时损失的资料。 

虽然跳频已被证明能改善无线电通信的方法,但目前仍持续发展中,信号跳频的速度越快,就越不会遇到侦测、干扰或拥塞。因此,虽然跳频不是新技术,设计人员还是不断致力于提高现代无线电中跳频的速度,以期进一步改善和强化性能,然而这些努力带来可观的设计与测试挑战。跳频信号和干扰源是在极端复杂、随时间变化的频谱下运作(图2),这些不稳定的信号行为,可能会使信号很难获取、验证和测量,为了在快速跳频技术使用量渐增的现代无线电中,有效地进行设计和测试,即需要新的工具和方法。

\

图2 左侧显示用户定义的频罩触发,右侧频谱图则显示获取到的跳频信号。

增加跳频速度伴随许多挑战

在设计通信系统,特别是系统架构和频率合成器时,跳频速度的加快带来许多挑战。现在无线电是一种复杂的系统,而且控制软件、数字信号处理器(DSP)和系统组件都必须搭配运作,以确保最佳的性能。由于软件会活跃地改变SDR操作参数,因此有无数种可能导致错误的硬件/软件组合。另外,调变和过滤瞬时、失真、非线性功率效应、脉冲偏差、频率微调和平复、电源供应器耦合、数字至RF的耦合以及与软件相关的相位错误,也都很常见。

设计快速频率合成器同样展现巨大的挑战,如美国军队部署的联合战术信息发布系统(JTIDS),能够在L频TDMA网络中以每秒38,461.5次跳频的速度运作,这代表频率合成器必须在不到26微秒的时间内,从一个频率跳到另一个频率、稳定下来,然后进行通信,系统瞬时响应必须在短短的几百纳秒内平复,才能零误差地进行通信。 

跳频载波的频率平复影响到调变质量,是发射器质量不佳和系统数据速率低落的主要原因之一。以前设计人员可以使用传统的测试设备,为位于向量信号分析仪中心频率的固定载波进行解调变,但传统的测试设备无法解调变今日的宽带跳频信号,由于这些信号会在作业频带上跳跃,因此需偏离中心频率的分析,以确保最佳的调变质量。而通过DSP产生动态RF波形以及数字RF电路(通常位于相同的集成电路)的整合,同样产生传统RF收发器设计所没发现的问题,举例而言,这些问题包括瞬时调变、放大器的非线性效应以及数字至RF的串音。 

SDR发射器的性能须通过比传统RF发射器兼容性测试更高标准的测量验证。仅通过测试还无法保证装置运作正常,另外还必须小心、彻底地观察系统行为,因为软件会不断变更系统参数,想要真正迎向这些挑战,SDR设计人员必须完整分析和了解其系统的特性。 

探索真正的系统行为对找出潜在的RF频谱异常非常重要。由于系统参数会随着时间改变,要立即精确找出发生的瞬时事件,必须执行频率选择性触发,而要判断每个问题的特定原因,则须在多域中运行时间关联分析。能够将整个事件无缝地获取至内存中,对后续分析来说非常宝贵,这是因为瞬时发生的条件可能很难重现,这些随时间而改变之验证信号性能的进阶疑难排除方法,加上在稳定状态条件下执行的传统兼容性测试,在全面性SDR测试中不可或缺。 

利用SDR验证性能和在系统层上进行疑难排除 

开发获得验证的系统架构设定,对于现代通信系统的成功极为重要,经过测试和验证的无线基站越多,系统整合的最后阶段中出现问题的机率就越低,另外,要在开发和整合周期中越后面的阶段处理这些问题,解决问题时花费的代价就越高

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top