微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > 开关电源传导EMI预测探讨

开关电源传导EMI预测探讨

时间:08-13 来源:互联网 点击:

进行了改进,考虑了电压过冲和下冲,并且在线路阻抗近似平衡的情况下,利用DM 电流源和一个电压源来表示CM 噪声源(如图2所示)。

  


  图2 共模噪声源的表示

  文献基本都是用梯形波来表示噪声源的,但实际中并不是每个电路中的开关器件的波形都能很好地用梯形波近似,图3所示即为一个反激电源开关管的电流电压波形,除了梯形波之外,还有电流尖峰,电压过冲和下冲等分量,会导致噪声源的频谱与梯形波有一定的不同。所以不能盲目地使用梯形波来表征噪声源,而是需要对电路进行分析或者仿真,从而得到开关器件的电流或电压波形,基于此波形再对噪声源进行建模,这样才能更精确地反映开关电源的电磁干扰。

  图3 某反激电源开关管的电流电压波形

  4.2 无源器件的高频模型

  在EMI的频率范围内,常用的无源器件都不能再被认为是理想的,他们的寄生参数严重影响着其高频特性。

  在各种无源器件中,电阻、电感和电容的高频等效寄生参数可以用高频阻抗分析仪测得。表1所示为各种无源器件的理想模型和高频等效模型。

  表1 电阻、电容、电感及变压器的高频等效模型

  对于高频变压器,提出可以使用有限元分析方法和实验测量法求取,从而可以得到漏感、原副边自电容和原副边互电容这些引起电路震荡、增加传导EMI的主要参数。使用ansoft公司的Maxwell仿真软件,可以通过输入变压器的绕组和磁芯的几何尺寸与电磁参数,利用有限元分析的方法得到各寄生参数。实验测量法的总体思路就是在所建立模型的基础上,推导出变压器在不同工作状态下的阻抗特性(如原副边绕组开路,短路的不同组合)方程,然后测量这些状态下的阻抗,从而得到漏感和寄生电容。

4.3 PCB及结构寄生参数的提取

  除了元器件选取、电路及其结构设计,PCB的布局、布线设计、线路板加工对电磁兼容会造成很大影响,是一个非常重要的设计环节。由于开关电源的PCB布线基本上都是依据经验手工布置,有很大的随意性,这就增加了PCB分布参数提取的难度。PCB的寄生参数会造成开关电源噪声传播途径的阻抗变化,影响控制器对开关电源输出电压电流的控制作用。PCB的布局不合理还会形成开关电源向外辐射电磁干扰的途径,同时也会通过该途径吸收外界电磁干扰,从而降低开关电源的电磁干扰抗扰度。所以PCB的布局布线是开关电源EMC设计中极为重要的环节。

  对于传导干扰,寄生参数的提取精确度是通过仿真有效预测EMI水平的关键。尽管对于结构简单的元件来说,寄生参数是很容易计算的,但是对于复杂结构中的元件来说,并不是那么容易就能得到寄生参数,例如多层板和直流母线的寄生参数。

  为了建立开关电源PCB的高频模型,需要对PCB的结构寄生参数进行抽取。提取PCB寄生参数的方法有很多,其中TDR(时域反射)方法可以在不知道实际几何形状的情况下对寄生电感和寄生电容进行提取,但是TDR(时域反射)方法需要时域反射仪,用于样机建成后,这就使开发成本大大增加,而且TDR方法不能寻找到复杂结构中的耦合效应;然而FEA(有限元分析)方法则可以克服这一缺点,用于样机建成前。利用FEA工具可以准确地得到PCB的寄生参数,并能考虑复杂几何结构的耦合情况。

  有很多对PCB结构进行寄生参数抽取软件,如InCa,SIwave,Q3D 等,分别用不同的方法对PCB的寄生参数进行计算和提取,如部分元等效电路方法、有限元分析方法、有限元分析方法和矩量法结合的方法等。其中InCa软件只能计算分布电感,不适合计算分布电容,不宜处理共模干扰的仿真分析;SIwave软件提取出来的是电路的S参数,不能清晰地反映PCB中的耦合情况及其对开关电源EMI的影响;Q3D 软件利用FEA 和MOM结合的方法求解电磁场,可以得到PEEC部分元等效电路,也可以得到PCB上各导体的互感互容,可以清晰地分析各种情况下PCB结构对开关电源EMI的影响。

  J.Ekman提出了基于寄生参数矩阵的等效电路的建立方法,即把所有互感、互容等效成受控的电压源,与自感、自容连接(相当于把所有互感、互容对电路的影响等效到受控电压源上),从而建立等效电路模型。图4所示为任意两个节点间的等效电路模型。

  图4 任意两节点间的等效电路模型

  图4中:

  式中:Lpmn为m和n两导线间的互感。

  虽然这样可以提高仿真的准确性,但是加大了分析的计算量,可以通过忽略一些对结果影响不是很大的互感、互容,减少计算量。

  散热片与开关管之间会有电容效应,噪声可以通过该效应在电路和地之间进行传播,文献【9】对散热片在开关电源传导和辐射干扰中的影响作了详细的阐述。

  还有其他的在空间通过电感或电容耦合传到接收器的噪声,不可以忽略。

模型建立之后,就可以使用

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top