微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > 电源管理芯片应用推动技术创新提速

电源管理芯片应用推动技术创新提速

时间:08-26 来源:EDN 点击:

安森美半导体亚太区电源管理部市场推广经理蒋家亮

  电源管理芯片供应商应体现独特价值


  随着电源管理电路的密度变得越来越小而性能变得越来越高,如果外部元件太多,则不能支持更多功能。例如,为了实现良好的待机性能,可能需要集成一定数量的运算放大器和比较器来使脉宽调制(PWM)操作转变至跳周期工作模式。这就是为什么高集成度也是电源管理应用发展趋势的原因。另外一个观点是电源管理IC的成本。特别是在本世纪最初的这10年,电源管理技术的演进极具挑战性,每家半导体公司都积极努力地开发高性价比而内部功能未被牺牲的电源管理IC。因此,我们可以想象出电源管理应用的技术演进将是朝高性价比和高性能方向发展。

  从市场角度而言,电源管理芯片的设计人员应当了解市场演变趋势、有关能效的国际标准以及重要客户的专有规范及其背后的设计哲学(形状、适应性和功能等),从而满足特定应用要求,例如美国苹果公司就对产品订立了严苛的规范要求。从技术角度而言,设计人员应当设计高密度的IC技术、高能效的电路模块等,同时不损及IC对环境噪声的免疫性能。

  线性电源是一种比较简单的电源转换器,将高输入电压转换为低输出电压,而输入电流等于输出电流。线性电源的优势包括电路简单、设计简单直接、噪声低、IC芯片尺寸小及静态电流低,其劣势则包括电源损耗较多、能效较低(仅达35%~50%)、变压器重量较大、难以应用在需要高能效的大功率或高密度电源中。

  与线性电源不同,开关电源或开关稳压器重复切换"开"和"关"状态,其能效高、重量轻,但开关电源的设计复杂度高,整体解决方案外形较大,需要导通元件、电感、二极管和电容等,在电磁干扰噪声、环路稳定性等方面需要仔细处理,适合高能效和高密度电源设计。根据能量存储元件的不同,开关电容主要包括电感升压驱动器和电荷泵/开关电容驱动器这两种类型。

  某些新的高能效封装技术也可能帮助实现更高密度,提高器件性能。例如,QFN(四方无引脚扁平封装)或DFN(双侧引脚扁平封装)封装已经展示出它们在高密度设计方面的应用优势。这些封装提供良好的热性能,使得热量可以从封装本身扩散至PCB布线区域,这样一来,一方面可以保持设计的尺寸最小,另一方面能够消除体积较大的散热片。此外,在诸如低压MOSFET这样的应用中,新的扁平引线技术能够在MOSFET上实现体积更小的封装及更高的密度,与此同时能够免除使用寄生元件(杂散电感和电容),这将帮助消除某些外部缓冲器电路,从而减少元件数量,实现更高能效。

  在半导体产业调整进程中成功的关键就是销售出半导体公司及其技术的独特价值,如提供成套解决方案以及为客户提供出色的技术支持等。身为全球领先的电源管理半导体供应商,安森美半导体在为客户提供成套解决方案及出色客户服务方面拥有丰富的经验和突出的优势。

  展望中国电源管理市场未来几年的发展,我们认为消费电子(如液晶电视和白家电)以及电信等应用领域可为电源管理IC带来广阔的发展空间。安森美半导体提供高性能的解决方案,用于这些领域。

  美信集成产品公司

  新型封装技术提升LDO性能

  不同的系统对电源有不同的要求,为了发挥系统的最佳性能,需要选择最适合的电源管理方式,比如线性电源、开关电源及电荷泵等。三种电源转换器中,线性稳压器的局限性表现在其输出电压只能低于输入电压;开关电源最为通用,能够提供升压、降压以及极性相反的输出;电荷泵同样可提供升压、降压、极性相反的输出,但其输出电流有限。

  线性稳压器利用一个有源调整元件(双极型晶体管或MOSFET)将输入电压降低至稳定的输出电压,其中低压差线性稳压器(LDO)在最近几年的应用已经十分广泛。压差指维持输出稳定所需要的最小电压差(输入和输出之间),压差在1V以内的调节器称为LDO,但现在典型的调节器具有100mV至300mV的压差。线性稳压器的输入电流接近于输出电流,可以用输出电压与输入电压的比估算它的效率。如果输出电压非常接近输入电压,线性稳压器就可提供较高的转换效率,如果输入电压高出输出电压很多,或者它在很宽的范围内变动,就很难获得比较高的转换效率。线性稳压器具有小尺寸、低成本、低噪声等特点,而且使用非常简单,因此,在电压、电流条件适当时应尽可能选用线性稳压器。除此之外LDO还可作为一道屏障来隔离开关调节器产生的噪声,这时,LDO的低压差特性有利于改善电路的总体效率。

  与线性稳压器相比,开关电源占用更大的电路板面积(不考虑线性稳压的散热片),成本更高,所产生的噪声也较大。而在最近几年开关电源的普及率却大大提高了,其主要原因是开关电源在不同输入电压、不同负载电流条件下能够提供很高的转换效率,升压、降压型开关电源效率可达96%,当然,降压型开关电源的转换效率可能更高一些。用电荷泵同样可实现上述转换,但该类芯片所能提供的负载电流有一定的局限性。LDO的主要缺陷是效率较低,特别是为低压电路供电时效率问题更加突出。由于在新型手机内部集成了PDA功能或上网功能,要求处理器的数据处理能力、运算能力更加强大,为了降低功耗,处理器的核电压不断降低,从1.8V降到了0.9V。为了降低电池损耗,要求采用高效的降压型转换器为处理器核供电。设计中需要考虑的主要因素有:低成本、小尺寸、高效率、低静态(待机)电流和快速瞬态响应。为解决上述问题不仅需要丰富的模拟设计经验,还需要一定的独创能力。就目前来说,只有少数领先的模拟半导体制造商能够提供SOT23封装、具有1MHz以上开关频率、允许选用微小外部电感和电容元件的降压转换器。

  当前,很多产品(如手机、数码相机等)倾向于将电源管理功能集成在单芯片上,用于射频、功放的LDO和用于LED驱动的DC-DC电源的功能都可以在同一块PMIC(电源管理集成电路)中得以实现。

  多年以来,SOT23封装的150mALDO是分立电源的最佳选择。目前,一些IC采用新型封装、新型亚微米处理工艺和先进的设计方案,能够以更小的尺寸提供更高的性能。SOT23封装的LDO可以提供300mA输出电流或在SOT23封装内集成两路150mALDO;尺寸更小的SC70封装内可以集成120mA的LDO并提供超低噪声。此外,更为先进的芯片级封装提供最小的封装尺寸,而QFN封装则允许在3mm×3mm面积内装入最大的晶片尺寸并提供更高的导热能力。因此,QFN封装可以集成更高电流的LDO或在每封装中集成更多数量的LDO,从而缩小了分立方案与PMIC之间的差异。

  

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top