微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 测试测量 > 基于WiMAX Wave2的双信道MIMO测量

基于WiMAX Wave2的双信道MIMO测量

时间:01-10 来源:互联网 点击:
   WiMAXWave2规范目前支持使用多个天线,以同时改善下行链路和上行链路的系统性能。与传统的单路输入单路输出(SISO)实施方案相比,多路输入多路输出(MIMO)配置的系统具有更高的频谱使用效率,因此数据速率更高。对这些高级WiMAX 系统进行表征和故障诊断,通常需要使用具有信道估算功能的双信道信号分析仪、“矩阵解码器”和OFDM解调器。

    矩阵A和矩阵B配置

    在WiMAXWave2系统下行链路发射端工作的多天线实施有空时编码(STC)―矩阵A和MIMO―矩阵B两种方案。图1为2x1 STC 和2x2 MIMO的典型下行链路配置。

 

    在矩阵A(STC)实施中,信道可以建模成两条路径,这两条路径将基站(BS)的两个发射天线连接到移动站(MS)上的一个接收天线。每条信号路径都可用一个唯一的信道系数“hx”来表示。每个系数代表各个发射-接收天线对之间所有路径的(假设为线性)集合,还可能包括在发射机中产生的信道间串扰以及在无线信道中出现的无数个多路径信号。另外使用每个天线在不同时刻、以同一频率发射同一信号的不同编码版本,可以改善信号接收质量。这种技术就是空间分集技术,矩阵A配置实施的就是这种技术。

    与之不同,矩阵B(MIMO)系统使用每个天线同时在同一频率信道上发射不同的数据流,以实现更高的数据速率和频谱效率。图1中所示的矩阵B配置,在无噪声系统中测得的接收信号为:

    假设四个信道系数已知,矩阵B接收机就能使用下面的简化方法来辨别并恢复发射的波形。

    这些方程也可用矩阵形式来表示:

    矩阵解码器的功能就是执行信道矩阵[H]的求逆运算和相关的数学运算,从而将最初发射的数据流进行恢复并将这些信息传输到解调器。注意,矩阵解码与解调是相互独立的,矩阵解码要先于解调之前完成。

    当信道系数之间存在关联时,实际的WiMAX接收机可以使用其固有的分解或MMSE技术[参考文献1]来进行真实的数据恢复。如上所述,数据恢复需要知道信道系数,信道系数的值可由接收机或双信道信号分析仪使用WiMAXOFDM波形[参考文献2]中包含的独一无二的导频结构来测出。精确的矩阵解码取决于信道系数的独立程度,并且它还会进一步受到信道中噪声数量的影响,这一点非常重要。当信道矩阵变成“病态矩阵”并且很难进行精确的倒数运算时,相关的信道系数和/或噪声便会导致系统性能降低。

    在上行链路中,MIMO可通过在同一频率信道上工作的两个独立移动站(手机)之间协调一致的同步传输来实施。这种技术称为上行链路协同空间多路复用(UL-CSM)技术,为了实施2x2MIMO,该技术在基站上使用了两个或更多的接收天线,并在每个移动站上使用一个天线[参考文献2]。在这种配置中,MIMO的实施仅限于上行链路。DL-MIMO要求每个移动站有两个天线和接收机信道。

    信道估算、矩阵解码和解调

    矩阵A波形和矩阵B波形的信号分析和故障诊断可使用单路输入或多路输入的矢量信号分析仪(VSA)来完成。许多基本测量,例如STC或MIMO发射机中的信道间串扰和定时,都可通过将单路输入分析仪直接连接到选定的发射机输出端口来完成[参考文献3]。当发射信号具有良好的隔离度时,这种单路输入的方法非常有用,此时无需使用矩阵解码器对波形进行解调。某些测试程序,如WiMAXWave2配置文件中定义的射频一致性测试(RCT),规定了在可能出现串扰以及不使用矩阵解码器的情况下,对发射机信号质量的单信道测量。遗憾的是,在系统优化和故障诊断过程中,这种基本测量对于分析众多信号误差的根本原因几乎没有什么作用。在这种情况下,要想找出误差的根源,常常需要将使用与不使用矩阵解码器进行测量的结果进行比较。在矩阵A系统中,可使用单信道VSA对使用和不使用解码器两种情况进行测试。在矩阵B 和UL-CSM系统中,一般需要使用双信道VSA来对这些日益复杂的波形进行全面分析。

    图2所示是一个典型的具有WiMAXMIMO测量功能的双信道VS(如带有选件B7Y的Agilent89600系列分析仪)的测量流程。在矩阵B配置中,MIMO信号分析从估算复杂的信道系数开始,这些系数可通过对在两个输入信号接收到的大量已知导频子载波进行测量而得到,如图中的Rx0和Rx1所示。这四个信道系数将作为子载波频率的函数来显示,在对MIMO系统进行优化和故障诊断时,这些系数是一个非常有用的分析工具。估算出来的信道系数

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top