微波EDA网,见证研发工程师的成长!
首页 > 研发问答 > 移动通信 > 无线网优技术 > TD 核心技术

TD 核心技术

时间:09-03 整理:3721RD 点击:
如题。

1.智能天线技术   智能天线(Smart Antenna,SA)利用信号传输的空间特性和数字信号处理技术,通过先进的算法处理,对基站的接收和发射波束进行波束形成和赋形,从而达到降低干扰、增加容量、扩大覆盖、改善通信质量、降低发射功率和提高无线数据传输速率的目的。
  在第三代移动通信系统中,TD-SCDMA是应用智能天线技术的典型范例。TD-SCDMA系统采用TDD方式,使上下射频信道完全对称,可同时解决诸如天线上下行波束赋形、抗多径干扰和抗多址干扰等问题。该系统具有精确定位功能,可实现接力切换,减少信道资源浪费。
  2.联合检测技术
  联合检测(Joint Detection,JD)技术是在多用户检测(Multi-User Detection,MUD)技术基础上提出的。该技术是减弱或消除多址干扰、多径干扰和远近效应的有效手段,能够简化功率控制,降低功率控制精度,弥补正交扩频码相关性不理想所带来的消极影响,从而改善系统性能、提高系统容量、增大小区覆盖范围。TD-SCDMA采用联合检测技术,实现了智能天线和联合检测技术的有机结合。
  3. 时分双工
  时分双工模式是TD-SCDMA与FDD系统的根本区别。工作在TDD模式下的 TD-SCDMA系统在同一载波上进行上、下行链路传输,而不需要像FDD系统所必须的上、下行对称频谱。除了充分利用频率资源, 极大地提高了频谱利用率以外,TDD模式的优势还在于系统可以根据不同的业务类型来灵活调整上、下行转换点,从而提供最佳的业务容量和频谱利用率。
  4. 上行同步
  上行同步是指在上行链路各终端发出的信号在基站解调器处完全同步,它通过软件及物理层设计来实现,这样可以使正交扩频码的各个码道在解扩时完全正交,相互间不会产生多址干扰,克服了异步CDMA多址技术由于每个移动终端发射的码道信号到达基站的时间不同,造成码道非正交所带来的干扰问题,提高了 TD-SCDMA系统的容量和频谱利用率,还可以简化硬件电路,降低成本。
  5. 动态信道分配
  TD-SCDMA所采用的动态信道分配技术可以实现在时域、空域和码域对无线的灵活配置。采用动态信道分配技术使得TD-SCDMA系统能够较好地避免干扰,使信道重用距离最小化,从而高效率地利用有限地无线资源,提高系统容量。此外,通过使用时域地动态信道分配,可以灵活分配时隙资源,动态地调整上、下行时隙的个数,从而灵活地支持对称和非对称的业务。
6.接力切换技术
接力切换是一种改进的硬切换技术,可提高切换成功率,与软切换比,可以克服切换时对邻近基站信道资源的占用,能够使系统容量得以增加。在接力切换过程中,同频小区之间的两个小区的基站都将接受同一终端的信号,并对其定位,将确定可能切换区域的定位结果向RNC 报告,完成向目标基站的切换。所以,所谓接力切换是由RNC 判定和执行,不需要基站发出切换操作信息。接力切换可以使用在不同载波频率的TD-SCDMA 基站之间,甚至能够使用在TD-SCDMA 系统与其它移动通信系统(如GSM,CDMA IS-95 等)的基站之间。

楼上总结的超全!!!!!!

核心是智能天线和联合检测技术。
基础是同步和功控。TD-SCDMA系统是TDD的系统,从而在同步方面要求非常严格;由于是CDMA系统,所以在功控方面要求非常严格。
并且由于要避开高通在CDMA方面的专利,所以选择的扩频码比较短,为了提高资源的利用效率又提出了接力切换技术。

智能天线+联合检测
TDD
接力切换

核心在    td  和sdma    就是 时分和 所谓的空分多址

智能天线--联合检测--接力切换---软件无线电---时分双工---功率控制---上行同步---动态信道分配等等,其中最核心的部分就是智能天线和联合检测技术

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top