网络分析仪及其使用(二)
装置)必须从信号电平的观点仔细了解,以从系统获得最佳性能。必须小心维持最佳入射测试信号和接收机输入信号的幅度。
- 反射测量
利用测量矢量的能力,可能测量器件反射信号与入射信号之比。这个比值是反射系数ГL的复数表示。矢量网络分析仪能显示反射系数的幅度或相位随频率的变化。它也能给出反射系数的极坐标显示。由于每个特定反射系数是与唯一的阻抗相关,故可能将矢量反射系数与阻抗相联系。
下图是所谓史密斯(Smith)圆图的常用极坐标显示的简图。它是反射系数的极坐标显示,具有对特性阻抗Z0归一化的交叠的恒定阻抗线。史密斯圆图的极坐标显示是对被测件的输入阻抗进行评估的十分有效的分析工具。所有正实数电阻值变换为单位反射系数圆内的点。
斯密斯圆图上的阻抗测量
下图是反射测量配置的模型。测得的反射系数(S11)和实际反射系数的表示式表明,测量不确定度受方向性、统调和源匹配三项的影响。在这种情况下,采取若干校准步骤可能比只注意可能达到的原始性能效果更好。第一步是将短路器置于测试端口;然后,将测得的数据对短路器的反射(在180°处,Г=1)归一化。这称之为响应校准,可消除测量系统中的频率响应误差。
反射测量信号通路
更复杂一些的方法是进行单端口校准。这个步骤要求测量几个不同的器件,以外推反射测量的误差项。第一个被测器件是精密负载,测得的数据是误差模型的方向性项。然后测量开路器和短路器。根据这两组测量,可能得出系统的源匹配误差和频率响应误差。校准之后,网络分析仪的检波器将储存误差项。这些误差项用来将测得的数据变换为被测件反射特性经修正后的显示。“理想”校准标准只将测量修正到它们自身的理想程度。例如,在很高的频率上,很难制造出理想的固定终端,因此,高频校准器件包括了滑动终端,利用滑动终端,通过将负载在空气线上滑动来形成数据点“圆”,可以确定给定频率上的方向性矢量。此数据点圆的圆心就是该频率上的方向性矢量。
- 传输测量
在进行二端口器件测量时,通常感兴趣的是测量未知器件的反射特性和传输特性。这将出现某些必须考虑的有意义的互作用,下图示出了测量情况。
传输测量的信号路径
首先看到的是,在被测件的输出端,测量系统的负载匹配将影响器件的输入匹配。在传输路径上,频率响应、源失配互作用、负载失配互作用和串扰是影响测量精度的几个因素。同反射测量情况一样,通过系统的计算代表特定测试系统特性的各项误差,可能利用已知标准器件的测量来对整个测量系统进行校准。
下图是传输测量的信号流图和表示式。注意,源匹配MS与S11A的互作用、负载匹配ML与S21A的互作用、传输频率响应误差Tt和漏泄串扰(C)误差。这个模型还表明,为了精确的得到S22A数据,必须知道精确为S11、S12和S22信息。
传输测量的信号流图
利用全二端口测量校准可以从数学上消除上述误差的影响。单端口反射校准用于表征源匹配特性,直通连接用于表征传输频率响应和负载匹配特性,而隔离校准则用于确定传输漏泄或串扰。一个完整的全二端口测量模型包括正向测量和反向测量两者的模型。为了精确测量单一S参数,必须测量所有参数。
一般校准方法是利用传统的开路/短路/负载/直通标准。然而制造这些标准并不总是简单易行,尤其是在非同轴媒质中更是如此。固定宽带负载很难制造,所以,为了获得更高的精密度,可以用滑动负载代替固定负载。在波导结构的毫米波频率上,用偏置负载和固定负载建立方向性矢量的中心点。在波导结构中采用了偏置短路,因为不可能存在开路标准。直通/反射/传输线(TRL)校准计算与其它方法相同的12个误差项(二端口的方向性、二端口的正向匹配和反向匹配、传输和反射的正向和反向统调以及正向隔离和反向隔离),但利用了直通连接,大的未知反射以及一段传输线(其参数阻抗为Z0参考)来获得校准数据。与其它校准方法相比,TRL校准方法具有简单和精确的优点。它特别适用于一些很难获得的异常传输线环境,如微带。下面的表格针对不同的校准方法给出了利用在7mm连接环境中提供的校准标准所能达到的精度类型的概念。
剩余误差 | 开路,短路,固定负载,dB | 开路,短路,滑动负载,dB | 开路,短路,偏置负载,dB | TRL,dB |
方向性δ | -40 | -52 | -60 | -60 |
匹配τ | -35 | -41 | -42 | -60 |
统调μ | ±0.1 | ±0.47 | ±0.35 | ±0.0 |
各种精度提高方法小结
测量校准 | 使用场合 | 所消除的误差 |
响应 | 传输测量 | 只频率响应 |
反射测量 | ||
不要求最高精度时 | ||
S11端口 | 反射测量:最高精度 | 方向性 源匹配 频率响应 |
用于单端口器件(可用于匹配良好的二端口器件) | ||
全二端口 | 传输测量 | 方向 |
网络分析仪使用 相关文章:
- 网络分析仪及其使用(一)(07-17)