网络分析仪及其使用(二)
在标量系统中,还利用了另一种校准技术,可减小由于方向性误差和源匹配误差之和引起的误差。通过对短路响应和开路响应取平均,可以消除由于方向性误差和源匹配误差之和引起的校准误差。开路和短路平均往往能将校准误差平均掉,从而使B=0。下图示出了开路和短路平均对校准的影响。
标量分析仪的开路和短路取平均的特性测量
大多数仪器供应商提供的一种很有用的工具是反射计和适配误差计算器。它是一种将方向性、失配、驻波比及不确定度关联在一起的简单器具。方向性可以直接转换为等效于反射系统测量中误差项A的线性项。此外,还可以直接在反射系数、回波损耗和驻波比(SWR)之间进行转换。还可以计算由于多次失配引起的波动大小。这在传输计算以及在反射不确定度的等效源匹配分析中都很有价值。
3、传输测量
进行标量分析仪的传输测量时,首先对直通参考连接进行校准,然后用被测件代替该直通路径。所得到的传输幅度测量的不确定度是校准测量的不确定度与器件测量的不确定度之和。起主要作用的误差源是源和检波器的失配。频率响应误差通过归一化来消除,但直通校准具有由源匹配和检波器负载之间多次反射引起的不确定度。当插入被测件时,在源匹配与被测件输入匹配之间以及在被测件输出匹配与检波器匹配之间将发生类似的不确定度。下图说明了这些失配是如何起作用的。
传输测量是配的不确定度
下图示出了实际多重失配不确定度如何相加。
失配不确定度模型
(ρs为源反射,ρ1为被测件的输入反射,ρ2为被测件的输出反射,ρd为检波器的反射)
在信号源或检波器前加缓冲衰减器、用稳幅技术改善源匹配或采用功分器-比值测量是可用来改善系统的等效源匹配或检波器匹配,因而降低测量不确定度的各种方法。
4、特殊应用
尽管标量网络分析仪的主要应用是线性网络的频域特性测量,但仍有一些它们可以解决的其它应用。例如,可以利用频域测量来计算沿传输结构回波损耗距离的变化。将傅里叶变换分析技术应用于频域信息,可以获得其时域仿真,从而能根据特定传输媒质的传播速度对它按距离进行定标。所得到的输出是传输结构缺陷位置分析的有力工具。
在某些标量网络分析仪系统中,可以个别针对检波器的频率响应和动态精度对其特性加以表征,这就使检波器能以功率计的精度来测量功率。有了这样的精度,标量分析仪在测量有源器件如放大器的压缩特性和对幅度的敏感特性时十分有用。此外,利用卓越的功率测量能力和所具有的诸如交流检波之类的技术,标量分析仪在测量变频器件如混频器元件或通信用上、下变频系统元件中,正在获得越来越多的应用。
二、矢量网络分析仪
基本测量特性 矢量网络分析仪配置与标量网络分析仪的主要区别在于接收机的复杂程度和从检波器外推的信息(见下图)。
矢量网络分析仪配置图
信号分离器件包含功分器、耦合器和(或)电桥。信号处理元件和适当的射频转接通常一起布置在测量系统的“测试装置”部分。这样做是因为在采用复杂的校准时,需要经常进行可重复的和精确信号的转接。
- 调谐接收机
矢量网络分析仪系统的接收机部分是以对信号源的频率跟踪的方式调谐的基波混频或谐波混频多通道接收机。接收机将宽带扫描射频信号向下变换成固定且与射频测试频率无关的中频频率。中频频率足够低,使能用精密检测电路确定每个接收机通道内的信号幅度和任意两个接收机通道的相位关系。结果是一种宽动态范围(100dB)的无杂散信号多通道接收机,能对其多个输入中的任意两个输入的矢量量值(如反射系数和增益)进行测量。测量相位特性的能力赋予矢量网络分析仪对被测件的复阻抗和相位延迟特性进行表征的功能。能测量矢量和进行复杂的计算允许这种测量系统实现复杂的校准,即通过测量精确已知的标准并计算出将应用于被测件测得得数据的修正系数。检波器能对测得的数据进行复杂的矢量操作,这种能力允许系统显著地改善测量的质量并降低与测量结果相关的不确定度。检波器还具有操作误差修正数据的能力,使以许多不同的显示格式(从线性相位或幅度随频率的变化到矢量的极坐标显示)给出信息。
与标量检波器的特性非常相似,矢量网络分析仪接收机对分析仪的性能也有若干限制。人们希望接收机在其变换特性时呈线性。因此,每个接收机通道在开始发生压缩和限幅之前,存在着最大允许的输入信号。在低信号电平下,接收机的灵敏度和精度受噪声和不是测量通路一部分的低电平信号漏泄(串扰)的限制。每个网络分析仪系统(包括适当的信号分离测试
网络分析仪使用 相关文章:
- 网络分析仪及其使用(一)(07-17)