微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 测试测量 > 信号源的使用方法

信号源的使用方法

时间:10-30 来源:微波射频社区 点击:

\

 
表1. AFG 与AWG 取样特点比较

  AFG结构的实现成本要低于全功能AWG工具集。结果,它非常经济,可以供各个工程师和科研人员使用。此外,AFG拥有某些独有的性能优势。部分领先型号拥有任何波形发生平台中最优秀的频率捷变性,即能够在不同频率之间平滑切换,而不会在信号中产生不连续点。

表1 概括了AFG 平台和AWG 平台的时钟和内存特点。

深入细节
  为更好地比较AWG和AFG结构,我们将进行简单的“案例分析”。我们将考察这两个平台处理定义输出波形的样点的方式。 

  这一比较涉及三种仪器:最大取样速率1 GS/s的AFG;最大取样速率1 GS/s的AWG #1;最大取样速率2 GS/s 的AWG #2。

  我们的目标是在3 MHz - 20 MHz 的频率范围内生成一个正弦波。这两台AWG和AFG都在100点的取样内存中装有一个正弦波周期。图3显示了这三个平台的特点怎样影响其任务处理方式。

  这三种工具都以1 GS/s 的取样速率读取100 个点,生成10 MHz 正弦波(图3 中的中间行):

\


图3. T 管理输出信号频率的三种方法。

AFG 的DDS 单元收到命令,在输出上提供10 MHz,它计算出1 GS/s 时钟每摆动一下增加1 个点。它接触到100 个样点中的每个点。
两个AWG中的时钟都被手动设置为1 GS/s,它们也读取100 个点,生成10 MHz 波形。
在把输出频率设为3 MHz (底部行),其方法出现分歧:
AFG 的时钟仍以1 GS/s 的固定速率运行。但现在,DDS把增量自动设成时钟每摆动一下0.3个点;也就是说,各个数据点重复三次或四次。
两个AWG中的时钟频率必须手动降到300 MS/s。时
钟现在更慢地读过样点,生成3 MHz 的输出频率。

现在,输出频率必须提高到20 MHz。这三个平台以不同方式迎接这一挑战:
  AFG 的DDS 单元把取样增量设为两个样点。它每隔一个样点读取一个样点,共使用50个点定义波形。其长度只是读取100个点的一半。结果是一个20 MHz输出信号。
  与所有AWG 在任何频率设置上一样,AWG #1 时钟每摆动一下读取一个样点。但是,由于其最大取样速率是1 GS/s,因此它不能在50 ns 的20 MHz 正弦波周期中读取100个点。因此,必须通过用户故意干预,把存储的波形图像下降到总共50 个点。结果是一个20 MHz 输出信号。
  它提供了多种软件

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top