微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 小基站部署中的非视距微波回传方案

小基站部署中的非视距微波回传方案

时间:05-18 来源:3721RD 点击:

图3(上)所示是金属和砖墙作为在单一反射点时,两套系统性能均进行了测试。第一个收发信机置于图中央的办公楼楼顶位置(高出地面18米),第二个收发信机置于同一办公楼临街的5米高的墙上。对面建筑的砖墙作为反射面,总链路长度大约100米。反射点入射角大约15度,依据早前研究的结论28GHz和5.8GHz的ΔLNLOS的值分别是24dB和16 dB.反射损耗与反射物材料有着非常决定性的关系,作为比较,以邻近的金属墙面作为反射点时,两套系统的ΔLNLOS均为大约5dB。作为结论,我们做链路指标预测时,可以假设28GHz的单点反射损耗在5至25dB之间,而5.8GHz系统在5至20dB之间。早期研究所示,表面粗糙度将导致脉冲扩散],但这可以通过充分长的均衡器得以可以缓解。图4(下)两个系统测试16个小时以上的吞吐量。

图4所示,28Ghz系统显示400Mbps的稳定的吞吐量,而5.8GHz由于使用更宽波束的天线,其吞吐量是波动的,其值是在70Mbps和100Mbps之间波动。我们认为这是由于宽波束的强多径传输所致。OFDM是针对多径传播的有效的抑制技术。如图所示严重的多径衰落导致逐级降低的吞吐量。然而采用窄波瓣的28GHz天线,结合先进的抑制均衡器可以有效抑制多径衰落,MINI-LINK系统的单载波QAM技术可以用于非视距传播,甚至使用56MHz信道带宽512QAM技术。

图4 使用反射的非视距回传站点(上图)28GHz和5.8GHz系统的吞吐量Mbps(下图)

3.3 透射

通常的误解是只有6GHz以下才支持NLOS透射。图5所示是两套系统的透射场景下的测试性能。两个收发信机分别置于中间有一高大的稀疏的树和矮的高密度树两端,距离150米,树木造成视距阻断。图5测试了树叶密度对传播的影响,图5左是发射波穿过稀疏的树木,图5右是穿过稀疏的树木和高密度树木的场景。

图5 应用稀疏树木(左)和高密树木(右)时透射的非视距回传。红圈指出接收机位置。上面两图是保持最高(绿色)和保持最低(红色)信道幅频响应

图5(上)所示频谱是在强风和低强度降雨导致NLOS损耗具有很大不确定性的测试结果,如图5所示,稀疏的树木增加6 dB穿透损失,而浓密的树木增加20-40 dB的穿透损耗。结论是用于小基站回传高可靠性指标时,对NLOS微波来说,可以接受稀疏的树木而高密度的树林是不建议成为NLOS传输路径。如果比较5.8Ghz和28GHz系统,低频段的系统性能会有些需提高。但仍然是与一般的大众的误解相反的,是28GHz可以用在稀疏绿植的NLOS的条件下,同时达到相当好的性能指标。

四、部署指南

前几节我们讨论了NLOS传播,衍射,反射及透射的关键系统指标。本节我们将演示讨论NLOS回传部署场景的预测和实际性能测试。

NLOS无线回传系统的汇聚站点(主站)是在高出地面13米的车库的一角,车库位于这一测试区域的南部。这一区域主要以4-6层的办公楼构成,办公楼是砖和钢筋的混合墙面,同时还有由南至北方向的10米宽的大街。大街充满了汽车和公共汽车。建筑墙面由砖面,玻璃及金属混合组成。

通过人工站点查验,图6所示是测试区域的非视距的预计传输效果,同时以不同的颜色区域绘制。场景范围包括纯视距(绿色),单一反射点或部分阻碍视线(黄色),单一远距反射(蓝色)以及双衍射或双反射(红色)。未上色的区域指示没有吞吐量预计或它是测量区域之外。白色虚线指示对其作了测量的区域。为简单起见,部分阻碍的路径损失,可以以6dB为经验值。

放置在移动升降机上的接收机距地面3米高,接收机随移动升降机沿主街道由南到北移动,街道近邻并与峡谷平行。主站与接收机间的全双工的吞吐量得到了测量。由于5.8GHz天线主瓣较宽,测量过程中无需调整主站天线。而28GHz天线主瓣较窄,对每个测试点都需调整主站天线,但在非视距条件下,28Ghz天线对准也比较简单。

所有的测试都超过或与预期的性能(彩色区域)吻合。对5.8GHz系统,多经衰落包括移动车沿峡谷街道移动的影响是巨大的,但对28GHz系统在更困难的场景下轻微地带来吞吐量的降低也是显然的。

五、总结

与常规的视距回传系统的相似,非视距回传链路主要得益于大带宽和大的链路冗余。6GHZ频带证实可用于非视距传输,同时本文指出距离主站在250米的区域内用6GHz系统,适度尺寸的定向天线可以达到小基站回传性能要求。尽管如此,与传统观念形成相反结论,但与理论一致的是,爱立信的MINI-LINK 28GHz产品性能在大多数非视距的条件下更优于6Ghz以下的设备。主要在于同尺寸天线对比高出20dB天线增益,更宽的频率带宽以及稳定的单载频MINI-LINK设备。在反射,衍射和稀疏叶子

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top