微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 可穿戴式无线网络技术应用方案

可穿戴式无线网络技术应用方案

时间:03-16 来源:3721RD 点击:

网络管理的任务是为维护整个网络的可靠运行。为了设备间建立通信连接和维护管理网络的方便,通常情况下都要对网络中的设备分配逻辑地址。在IPv6尝未启用之前,肯定很难做到把实际的IP地址作为各通信设备的逻辑地址。但作为网关的设备应拥有实际的IP地址,这样有利于进行Web访问。当然,如果必要,也可考虑将网关设备作为DHCP服务器,但这样显然会加重网关设备的工作负荷。事实上,也可利用各无线技术自己的地址编址和分配方案。

为检测网络内部设备的活动状态,可以向整个网络或特定的Ⅱ级网络发布广播消息。并根据反馈的情况对整个网络进行诊断,以便及时向使用者发出预警。当然,也可发布包含特定网络设备地址的广播消息,这种情况通常发生在消息发布者需要与该设备建立联系的时候。

3. 可穿戴式无线网络核心技术

尽管目前无线局域网技术已较为成熟,可作为开发可穿戴式无线网络的基础,但要将其真正应用于可穿戴式无线网络还需解决多项关键难题,这些难题集中体现了可穿戴式无线网络的核心技术,它主要表现在以下方面:

3.1 网络设计

网络设计首先要尽可能的保证系统功能的发挥和网络的稳定。相对有线技术而言,采用无线技术的可穿戴式网络在组网上有较大的灵活性。

除此之外,网络设计还应考虑人的体形特征和行为习惯。良好的网络结构应具有穿戴方便、舒适,重量轻、便于携带,有一定的抗震性等特征,同时还应尽量使网络的结构简单、使用方便(特别是操作和阅读方面的服务)。

3.2 输入输出装置[3][4]

输入输出装置是实现可穿戴式无线网络人-机交互的重要接口,人-机交互的灵活性和方便性不止会影响系统功能的充分发挥,而且还会影响到市场上的推广应用。

输入装置既包括手写板、键盘、麦克风等由人操控的装置,也包括摄像头、GPS、传感器等专门的数据输入装置。输入装置除实现语音和数据的输入外,还应能满足控制上的要求;输出装置包括耳机、显示装置和触动装置等。输出装置不仅要向使用者提供信息服务,同时还应体现使用者的意志和要求。当然,不同的应用所需要的输入输出装置不一定相同,应根据实际需要来配置。

3.3 多功能集成装置

应当说,满足穿戴式无线网络需要的具有特定功能的设备目前市场上大都已经具备,有些功能之间还进行了整合设计,如耳麦、触摸屏等。但这些设备大多不具有无线接口,所以需要对它们进行集成,并在外壳上重新设计以符合人体穿戴的需要。对那些在网络中承担多种角色的设备而言,多功能集成的需要就更为迫切,也更为重要。例如,作为网关的手机不仅应具有手机的各项功能,还应承担管理整个可穿戴式无线网络和进行数据转发的任务,这显然具有一定的挑战性。

多功能集成装置的集成度越高、设备越微型化,就越能更好地满足穿戴式无线网络的需要。当然,这有赖于超大规模集成电路的进一步发展。

3.4 操作平台

针对可穿戴式无线网络的要求,应提供与其硬件设备相对应的操作平台。操作平台同样可根据具体的应用需求来开发,但它们应具备基本的为保障整个网络稳定运行的各项管理服务。总体说来,可以直接借鉴当前在手机等移动终端上使用的掌上OS,并在此基础上进一步开发;也可采用Linux来开发专用的OS。前种方式将明显有利于缩短开发周期,并可重用现有的应用软件,其缺点是功能有限;后种方式可具有很强的针对性,其缺点是没有相应的应用软件支撑,开发难度较大。

3.5 网络顽存性[5]

网络的顽存性体现在它对周围环境的适应能力。它主要表现在两个方面:网络连接的可靠性和稳定性、网络的抗干扰能力。网络的顽存性在很大程度上决定了网络的服务质量(QoS)。由表1-1可知,蓝牙和ZigBee技术都有一些增强环境适应性的技术措施。例如在抗干扰方面,ZigBee和蓝牙分别采用了DSSS、FHSS技术;在纠错机制方面,蓝牙和ZigBee分别采用了前向纠错机制和差错检测/重传机制等等。但是,由于当前无线设备的迅猛增多,无线设备的使用环境也随之恶化,在加之它们都工作于ISM频段,因而有必要研究更可靠的技术措施来保障网络的顽存性。

3.6 能源

对可穿戴式无线网络,网络中的设备通常通过电池来供电。电池一个周期的平均工作时间一方面取决于电池的容量,另一方面也与设备的能耗和电源的使用效率有关。
目前,在大规模集成电路的推动下,很多电子设备都在向小型化和微型化方向发展。比较而言,电源技术并没有取得实质性进展,从而使得在很多移动通信设备中电池所占重量和体积的比例越来越大。因而寻找新的替代能源将是一项具有重要意义的课题。
在现阶段只能通过电池供电的情况下,除要求使用者应养成良好的操作习惯外,可从硬件和软件两方面来着手以提高电池的平均工作时间。硬件方面,应尽可能地提高设备的集成度,并利用新型元器件进行节能设计以降低设备的能耗;软件方面,应设计合理的设备工作模式和节能模式,同时开发相应的算法以使信号的发射功率具有自适应特性。

3.7 安全

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top