微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 电子熔丝在计算机应用中的优势

电子熔丝在计算机应用中的优势

时间:06-08 来源:21IC 点击:

图1 采用SENSEFET感测电流


当输出电容充电完成时,电流急降,限流电路停止控制输出。在这种条件下,FET电压极低,限流电路充当分压器。如果我们还是假设负载电流为1A,那么主FET的压降就为50mV。电流感测放大器的输入就是这电压根据由感测单元(50Ω)和外部感测电阻(50Ω)构成的分压器按比例所分的电压。所有电流变压器上的输入仅有25mV电压,不足以激活放大器,且这器件没有进入限流状态。

图2展示NIS5132的一对曲线。导通较低的曲线时,激活的是短路曲线。一旦电流降低至低于这个电平,FET就完全导通(线性区域),接下来面对的就是过载电平。如果电流达到过载电平,FET的栅驱动将立即减小,而漏极至源极电压将增加,并会将工作模式改为短路电平模式。这器件在过载电平时不能维持稳态工作。

图2 NIS5132的限流曲线


限流电路永远都不会关闭芯片,但只会降低输出电压。如果器件在芯片不能维持功率电平保持足够长的时间段的限流,热限制电路最终将关闭这器件。

使用电子熔丝

计算机总线是这些器件的极佳应用领域。如果总线上的过载会导致连接到总线上的任何负载关闭,分布式电源架构的可靠性就大打折扣。连接电路保护器件会大幅提升这类系统的可靠性。这并非新技术,但在过去,大多数方案采用金属熔丝或聚合物熔丝,并结合或没有合熔丝使用TVS器件。

这些器件的典型应用包括风扇驱动器、硬盘驱动器、光盘驱动器,以及通常从5V或12V总线消耗1A或更大电流的任何电路板。5V及12V电子熔丝都有供货。

它们还可用于热插拨应用。电子熔丝的功能是积极地限流,而非简单地监测电流并在预定的电平关闭电流。热插拨应用的一个例子是需要移除电源或硬盘驱动器并插入热总线的大型高可靠性计算机系统。这些器件限制浪涌电流至低电平,使器件的输入或输出端都不会出现瞬态电压。

1基本工作原理

电子熔丝器件是电子熔丝,如果理解其基本工作原理的话,就简单易用。图3显示的是电子熔丝的系统级原理图。图中显示了两个器件(5V及12V),它们连接至共用的启动及关闭电路。两个器件都含低导通阻抗的垂直MOSFET,用于低损耗工作。

图3 5V及12V熔丝的系统原理图


电子熔丝最少需要1个外部元件。电流感测电阻是必需的,且必需选择这电阻来设定限流至所期望的电平。可以增加其他元件来改变器件的功能。这些元件有内部压摆率(dv/dt)控制电路,会在约1.5ms的时间间隔内提升输出电压。在dv/dt引脚至地间增加外部电容还能延长这时间。也能够使用启用(enable)引脚至地间的开漏极晶体管来控制这器件。

电子熔丝设计为默认导通状态。只有三种条件会导致它们关闭,否则FET会启用。这些条件是:

①达到了热限制值;
②输入电压不符合欠压锁定(UVLO)要求;
③启用(enable)引脚拉至低电平。

如果上述条件一个都没有符合,这器件将处理于导通状态,为负载提供电流。

2过压钳位

过压钳位功能保护负载免受可能损害其电路的输入瞬态的影响。输出电压达到电路设定点(12V器件的额定电压为15V,5V器件的额定电压为6.7V),主FET的栅驱动将减小,器件将充当线性稳压器工作。只要未达到热动作限制值,这种工作模式就能够无限地维持。过压电路不会直接关闭器件。这特性使这芯片能够保护负载免受过压瞬态影响,同时使负载能持续工作。

图4中,应用了持续时间数毫秒(ms)的25V瞬态,输出电压钳位至安全的电平。只要瞬态存在,这电路就一直钳位,只是芯片耗散的功率会有不同。

图4 12V电子熔丝对25V浪涌的瞬态响应


3启用(enable)电路

启用电路使用户能够控制器件,并在发生热关闭时提供信号。这是一种三态信号,同时发送及接收信息,能够监测这信号以检测芯片的状态。如果用户选择不用这个引脚,它只需保留在开路状态,器件会自己控制。

图5显示的是这电路的信号电平,而图6显示的是等效原理图。在正常工作中,内部电流源将启用引脚上拉至4.3V。如果发生热故障,由于过大直流电流、限流或过压保护原因,这器件将关闭,热逻辑将把这信号下拉至1.6V电平。

图5 启用/故障信号电平


这电平能够由微处理器或其他电路来监测并提示发生了热关闭。启用引脚下拉至地时热闩锁会复位。热释放完毕后,芯片将重启。

图3所示电路中,二者的启用引脚连接在一起。这些芯片的设计支持3个器件连接在一起,启用引脚将使这些芯片能相互通信。如果任何一个芯片进入热关闭状态,所有连接在一起的器件都将关闭,直到启用引脚拉至低电平前。启用引脚拉至低电平将会把热过载的芯片上的闩锁复位,且所有芯片都将同时导通。

4 dv/dt(slew率控制)电路

为了控制系统的导通浪涌电流及电子熔丝负载的电压,集成了dv/dt电路来提升输出电压。控制输出电容两端电压的dv/dt率会迫使恒定电流流动,直至输出电压等于输入电压。

内部电容设定5 V电子熔丝的上升时间(ramp time)为1.4ms,而设定12V器件的上升时间为0.9ms。若有需要,在这引脚上增加额外的电容能延长上升时间至数百毫秒。

5 UVLO

芯片的输入处于安全范围之前,内部欠压锁定(UVLO)电路将关闭输出。12V电子熔丝的UVLO设定为8.5V,而5V器件设定为3.6V。

6 热保护

裸片上热保护功能使这些器件极为坚固。这功能监测功率FET的温度,并在温度达到关闭点的事件中启动热关闭。这就保证FET工作在安全区域(SOA)。结合这个功能及限流电路,这些器件唯一的失效模式就是超过额定输入电压。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top