3G LTE动态资源分配机制研究
全面支持Wave2的WiMAX|0">
而充分利用频率分集和多用户分集,获得最佳的系统性能。这是LTE系统无线资源分配的另一个特点。
1.3分布式网络架构
传统的3GPP接入网UTRAN由NodeB和RNC两层节点构成,但在LTE系统中,为了达到简化网络、缩短延迟的目的,E-UTRAN完全由演进型NodeB(eNB)组成。LTE系统的网络架构如图1所示,主要由演进型NodeB(eNB)和接入网关(aGW)构成。eNB之间底层采用IP传输,在逻辑上通过X2接口互相连接,即形成Mesh型网络。这样的网络结构设计主要用于支持UE在整个网络内的移动性,保证用户的无缝切换。而每个eNB通过S1接口和aGW连接,一个eNB可以和多个aGW互连,反之亦然。aGW实际上是一个边界节点,如果将它看作核心网的一部分,则接入网主要由eNB一层构成。
网络架构的变化,使得无线资源分配过程中的小区间协调需要考虑管理信令开销和控制时延。分布式的网络架构是LTE系统无线资源管理的第三个特点。
图1 LTE网络系统架构图
2 动态资源分配
LTE系统中无线资源分配机制有着与传统方式不同的特点,本文接下来将重点讨论动态资源分配,其中包括调度和功率控制两部分。
2.1调度
频率资源的调度在基于分组交换的无线网络中起着至关重要的作用,3GPP中给出了调度的定义:基站调度器动态地控制时频资源的分配,在一定的时间内分配给某一个用户[4]。一个好的调度算法要求在保证用户QoS要求的同时要获得最大化系统容量,因此要在系统与用户之间进行折衷。随着无线网络的快速发展,各种类型的新业务不断涌现,如VoIP、多媒体业务等,这些业务的QoS要求之间存在着很大的差异,如何在这一个复杂而巨变的网络条件下设计一个优秀的调度器来满足不同业务的需要是一件极具挑战的事情。
要兼顾系统的吞吐量与用户的QoS要求,需要为调度器提供一定的外部信息,如用户信道状况、数据的队列长度等。调度需要综合考虑各种因素,在充分利用信道状态信息和用户业务信息的同时,尽量减少信令及其他各方面的开销,最大限度地提高系统的性能。
LTE是基于全IP的分组交换网络,系统带宽从1.25MHz到20MHz,大于典型场景信道相关带宽,因此可以利用无线信道衰落特性进行时频二维调度,在保证用户QoS的同时,最大化系统容量。如图2所示,整个频段被划分成大小相等的资源块,在每一个子帧的开始,根据特定的调度算法将这些资源块分配给不同的用户。资源调度的同时,需要考虑相邻小区间的干扰问题,现在还没有一个很好的解决方法。
图2 时频二维资源调度
在调度过程中,如果是下行链路,就由下行控制信令通知UE分得的具体的资源块和相应的传输格式。上行可以是基于调度的接入(NodeB控制),也可以是基于竞争的接入。当为基于调度的接入时,UE在一定的时间内动态分得一定的频率资源进行上行数据发送,下行控制信令通知UE分得的资源块和相应的发送格式[4]。
2.2功率控制
下行链路中的功率控制要求可以补偿路径损耗和阴影衰落,这个目标通过慢速功率控制就可以达到,但是为了充分利用频率分集效用,在每个调度周期内还需要考虑每个子信道上的功率分配问题。与功率控制相比,功率分配的周期更短、粒度更小。功率分配和子载波的分配一般联合考虑,以保证用户QoS要求和系统总吞吐量。目前研究单小区子载波分配和功率分配的文献比较多,但是都比较复杂且假设条件过于理想化,很难应用于工程上。目前比较简单有效的下行功率控制(功率分配)方法有:平均分配法和路径损耗补偿法。
平均分配法:将每个扇区的功率平分到每个子载波上,每个用户的发射功率即可以根据所占用的子载波数来确定。
路径损耗补偿法:系统中所使用的方法,取扇区功率一部分用于补偿用户的大尺度和阴影衰落,剩余的功率用于功率注水。
此外,在干扰协调机制中,也需要功率控制进行配合,如文献[5,6]中给出的干扰协调方法中除了将可用频率资源在中心用户与边缘用户之间进行分配外,还要求中心用户减功率发送,边缘用户全功率发送。
在上行的功率控制中,由于用户间相互正交,减少了远近效应的影响,因此不需要快速功率控制,应采用慢速功率控制来补偿路径损耗和阴影衰落;通过功率控制减少扇区间的同频干扰,保证系统的容量能够达到较高的要求。上行功率控制机制是实现小区间干扰抑制的重要手段,因此是LTE系统中的重点研究内容。
按照是否需要反馈信息上行功率控制,可以分为开环方式和闭环方式。同时,根据实现的功能不同也可以分为两类:部分功率控制--补偿路径损耗和阴影衰落[7,8];抑制小区间干扰--UE基于相邻小区周期性的广播负载指示信号调整发送功率谱密度[