全面解析3G演进LTE新兴技术
时间:06-25
来源:IT专家网
点击:
在3GPP中,3G LTE的正式名称是3G Long Term Evolution(LTE),即3GPP长期演进(LTE)项目。
3GPP长期演进(LTE)项目是近两年来3GPP启动的最大的新技术研发项目,以OFDM/FDMA为核心的技术,与其说是3G技术的"演进"(Evolution),不如说是"革命"(Revolution)。
这种技术和3GPP2AIE、WiMAX、以及最新出现的IEEE802。20MBFDD/MBTDD等,具有某些"4G"特征,被看作"准4G"技术。
在我国与LTE对应的计划被称为E3G,"863"计划中与B3G对应的Future计划被考虑用于发展E3G,参与LTE的发展工作。
3G LTE的由来
随着PDA和笔记本电脑的发展普及,用户希望能够随时随地上网,一个新的市场---"宽带无线移动接入"正在兴起。宽带无线接入技术面向一个固定和移动通信融合的新市场,它可提供与宽带有线固定接入并行的宽带无线接入业务,支持移动应用。
目前2。5G/3G手机移动数据业务和宽带无线接入业务是两个不同的市场段。宽带无线接入业务采用WiMAX(IEEE802。16d/e)固定/移动宽带无线城域网技术,核心网是标准的IP网,其无线链路的物理层和MAC层的设计考虑了突发型的分组数据业务的要求,能够自适应无线信道环境,速率可达几百kbit/s甚至几十Mbit/s。手机数据业务基本是一个蜂窝移动通信网,下载速率在100kbit/s以下。
作为手机数据业务的3G系统在支持IP数据业务时频谱效率低,其面向连接固定带宽的结构不适应突发式IP数据业务的需求。为此,3GPP和3GPP2都认识到目前的系统提供互联网接入业务的局限性,试图在原来的体系框架内,在下行链路中采用分组接入技术,大幅度提高IP数据下载和流媒体速率。3GPP在R5系统中增加了高速下行分组接入(HSDPA)(被称为3。5G),速率可以达到10Mbit/s以上,随后进一步在R6中增加高速上行分组接入(HSUPA),将解决上行链路分组化问题,提高上行速率,进一步引入自适应波束成形和MIMO等天线阵处理技术,可将下行峰值速率提高到30Mbit/s左右,核心网也在向全IP网演化。
HSDPA和HSUPA被称为3。5G技术,属于中期演化技术,受原体制束缚较大,性能不够理想。3GPP发现在HSDPA和ITU部署的B3G之间存在一个空档,这正是WiMAX的目标。在一段时间内的宽带无线接入市场上,HSDPA、HSUPA对WiMAX的竞争将处于劣势。
为了提高3G在新兴的宽带无线接入市场的竞争力,摆脱Qualcom的CDMA专利制约,需要发展LTE(longtermevolution)计划,以填补这一空档。为此,3GPP在2004年底发展了长期演化(LTE)计划,基本思想是采用过去为B3G或4G发展的技术来发展LTE,使用3G频段占有宽带无线接入市场。2004年12月3GPP雅典会议决定由3GPPRAN工作组负责开展LTE研究,将于2006年6月完成,2007年6月推出。
LTE概述
3GPP经过激烈的讨论和艰苦的融合,终于在2005年12月选定了LTE的基本传输技术,即下行OFDM;上行SC(单载波)-FDMA。
下行技术的选择没有经过很大的波澜。OFDM是公认的宽带无线通信的首选技术,虽然有个别公司仍试图坚持传统的CDMA技术,但绝大部分公司很早就在采用OFDM作为下行核心技术这一点上达成了共识。
上行传输技术的选择颇费了一番周折,大部分欧美设备商对OFDM的上行峰平比PAPR(将影响手持终端的功放成本和电池寿命)有顾虑,坚持采用单载波技术(具有较低的PAPR)。虽然一些公司(主要是积极参与WiMAX标准化的公司)认为可以采用某些方法解决OFDM的PAPR的问题,但并没有说服单载波阵营。
在3GPP中,3G LTE的正式名称是3G Long Term Evolution(LTE),即3GPP长期演进(LTE)项目。
3GPP长期演进(LTE)项目是近两年来3GPP启动的最大的新技术研发项目,以OFDM/FDMA为核心的技术,与其说是3G技术的"演进"(Evolution),不如说是"革命"(Revolution)。
这种技术和3GPP2AIE、WiMAX、以及最新出现的IEEE802。20MBFDD/MBTDD等,具有某些"4G"特征,被看作"准4G"技术。
在我国与LTE对应的计划被称为E3G,"863"计划中与B3G对应的Future计划被考虑用于发展E3G,参与LTE的发展工作。
3G LTE的由来
随着PDA和笔记本电脑的发展普及,用户希望能够随时随地上网,一个新的市场---"宽带无线移动接入"正在兴起。宽带无线接入技术面向一个固定和移动通信融合的新市场,它可提供与宽带有线固定接入并行的宽带无线接入业务,支持移动应用。
目前2。5G/3G手机移动数据业务和宽带无线接入业务是两个不同的市场段。宽带无线接入业务采用WiMAX(IEEE802。16d/e)固定/移动宽带无线城域网技术,核心网是标准的IP网,其无线链路的物理层和MAC层的设计考虑了突发型的分组数据业务的要求,能够自适应无线信道环境,速率可达几百kbit/s甚至几十Mbit/s。手机数据业务基本是一个蜂窝移动通信网,下载速率在100kbit/s以下。
作为手机数据业务的3G系统在支持IP数据业务时频谱效率低,其面向连接固定带宽的结构不适应突发式IP数据业务的需求。为此,3GPP和3GPP2都认识到目前的系统提供互联网接入业务的局限性,试图在原来的体系框架内,在下行链路中采用分组接入技术,大幅度提高IP数据下载和流媒体速率。3GPP在R5系统中增加了高速下行分组接入(HSDPA)(被称为3。5G),速率可以达到10Mbit/s以上,随后进一步在R6中增加高速上行分组接入(HSUPA),将解决上行链路分组化问题,提高上行速率,进一步引入自适应波束成形和MIMO等天线阵处理技术,可将下行峰值速率提高到30Mbit/s左右,核心网也在向全IP网演化。
HSDPA和HSUPA被称为3。5G技术,属于中期演化技术,受原体制束缚较大,性能不够理想。3GPP发现在HSDPA和ITU部署的B3G之间存在一个空档,这正是WiMAX的目标。在一段时间内的宽带无线接入市场上,HSDPA、HSUPA对WiMAX的竞争将处于劣势。
为了提高3G在新兴的宽带无线接入市场的竞争力,摆脱Qualcom的CDMA专利制约,需要发展LTE(longtermevolution)计划,以填补这一空档。为此,3GPP在2004年底发展了长期演化(LTE)计划,基本思想是采用过去为B3G或4G发展的技术来发展LTE,使用3G频段占有宽带无线接入市场。2004年12月3GPP雅典会议决定由3GPPRAN工作组负责开展LTE研究,将于2006年6月完成,2007年6月推出。
LTE概述
3GPP经过激烈的讨论和艰苦的融合,终于在2005年12月选定了LTE的基本传输技术,即下行OFDM;上行SC(单载波)-FDMA。
下行技术的选择没有经过很大的波澜。OFDM是公认的宽带无线通信的首选技术,虽然有个别公司仍试图坚持传统的CDMA技术,但绝大部分公司很早就在采用OFDM作为下行核心技术这一点上达成了共识。
上行传输技术的选择颇费了一番周折,大部分欧美设备商对OFDM的上行峰平比PAPR(将影响手持终端的功放成本和电池寿命)有顾虑,坚持采用单载波技术(具有较低的PAPR)。虽然一些公司(主要是积极参与WiMAX标准化的公司)认为可以采用某些方法解决OFDM的PAPR的问题,但并没有说服单载波阵营。
LTE能带来什么
3GLTE着重考虑的方面主要包括降低时延、提高用户的数据率、增大系统容量和覆盖范围以及降低运营成本等。LTE的目标主要包括以下的内容:
支持1。25MHz~20MHz带宽;
极大提高峰值数据速率(在20MHz带宽下支持下行100Mbps、上行50Mbps的峰值速率);
在保持现有基站位置的同时提高小区边缘比特速率;
有效提高频谱效率(3GPP版本6的2~4倍);
将接入网时延降低到10ms以下;将控制平面时延降低到100ms以内;
优化15km/h以下低速用户的性能,能为15-120km/h的移动用户提供高性能的服务,可以支持120-350km/h的用户;
吞吐量、频谱效率和移动性指标在5km半径的小区内将得到充分保证,当小区半径增大到30km时,只对以上指标带来轻微的弱化;
支持多种载波带宽,以满足配置系统时窄带频谱分配时的灵活性;
支持与现有的3G系统和非3GPP规范系统的协同工作:增强的MBMS(Multimedia Broadcast Multicast Service);降低CAPEX(资本支出,Capital Expenditure)和OPEX(运营支出,Operation Expenditure)的成本;
降低空中接口和网络架构的成本;
实现合理的终端复杂度、成本和耗电;
支持增强的IP多媒体子系统(IP Multimedia Sub-system,IMS)和核心网;尽可能保证后向兼容,有效地支持多种业务类型,尤其是分组域(PS-Domain)业务(如VoIP等);
优化系统为低移动速度终端提供服务,同时也应支持高移动速度终端;
支持增强型的广播多播业务;
系统应该能工作在对称和非对称频段;尽可能简化处于相邻频带运营商共存的问题。
为了实现3GLTE的设计目标,着重在空中接口传输技术和接入网结构上对现有3G系统进行改进。
在空中接口方面,一是在下行链路采用能够有效对抗多径衰落、提高频谱效率的OFDM技术;采用自适应链路技术使编码调制参数能够适应无线信道的变化,以提供更高的频谱效率和更可靠的传输性能;通过在发射端和接收端配置多个天线,从而提高系统的容量、改善系统性能;二是在上行链路采用峰均比(PAPR)较低的分布式或集中式单载波频分复用提供多址接入;在帧结构和频谱规划上,尽可能与现有3G标准相兼容,以方便终端在不同制式系统中的切换,减小未来升级带来的投入。
LTE能带来什么
3GLTE着重考虑的方面主要包括降低时延、提高用户的数据率、增大系统容量和覆盖范围以及降低运营成本等。LTE的目标主要包括以下的内容:
支持1。25MHz~20MHz带宽;
极大提高峰值数据速率(在20MHz带宽下支持下行100Mbps、上行50Mbps的峰值速率);
在保持现有基站位置的同时提高小区边缘比特速率;
有效提高频谱效率(3GPP版本6的2~4倍);
将接入网时延降低到10ms以下;将控制平面时延降低到100ms以内;
优化15km/h以下低速用户的性能,能为15-120km/h的移动用户提供高性能的服务,可以支持120-350km/h的用户;
吞吐量、频谱效率和移动性指标在5km半径的小区内将得到充分保证,当小区半径增大到30km时,只对以上指标带来轻微的弱化;
支持多种载波带宽,以满足配置系统时窄带频谱分配时的灵活性;
支持与现有的3G系统和非3GPP规范系统的协同工作:增强的MBMS(Multimedia Broadcast Multicast Service);降低CAPEX(资本支出,Capital Expenditure)和OPEX(运营支出,Operation Expenditure)的成本;
降低空中接口和网络架构的成本;
实现合理的终端复杂度、成本和耗电;
支持增强的IP多媒体子系统(IP Multimedia Sub-system,IMS)和核心网;尽可能保证后向兼容,有效地支持多种业务类型,尤其是分组域(PS-Domain)业务(如VoIP等);
优化系统为低移动速度终端提供服务,同时也应支持高移动速度终端;
支持增强型的广播多播业务;
系统应该能工作在对称和非对称频段;尽可能简化处于相邻频带运营商共存的问题。
为了实现3GLTE的设计目标,着重在空中接口传输技术和接入网结构上对现有3G系统进行改进。
在空中接口方面,一是在下行链路采用能够有效对抗多径衰落、提高频谱效率的OFDM技术;采用自适应链路技术使编码调制参数能够适应无线信道的变化,以提供更高的频谱效率和更可靠的传输性能;通过在发射端和接收端配置多个天线,从而提高系统的容量、改善系统性能;二是在上行链路采用峰均比(PAPR)较低的分布式或集中式单载波频分复用提供多址接入;在帧结构和频谱规划上,尽可能与现有3G标准相兼容,以方便终端在不同制式系统中的切换,减小未来升级带来的投入。
3GPP长期演进(LTE)项目是近两年来3GPP启动的最大的新技术研发项目,以OFDM/FDMA为核心的技术,与其说是3G技术的"演进"(Evolution),不如说是"革命"(Revolution)。
这种技术和3GPP2AIE、WiMAX、以及最新出现的IEEE802。20MBFDD/MBTDD等,具有某些"4G"特征,被看作"准4G"技术。
在我国与LTE对应的计划被称为E3G,"863"计划中与B3G对应的Future计划被考虑用于发展E3G,参与LTE的发展工作。
3G LTE的由来
随着PDA和笔记本电脑的发展普及,用户希望能够随时随地上网,一个新的市场---"宽带无线移动接入"正在兴起。宽带无线接入技术面向一个固定和移动通信融合的新市场,它可提供与宽带有线固定接入并行的宽带无线接入业务,支持移动应用。
目前2。5G/3G手机移动数据业务和宽带无线接入业务是两个不同的市场段。宽带无线接入业务采用WiMAX(IEEE802。16d/e)固定/移动宽带无线城域网技术,核心网是标准的IP网,其无线链路的物理层和MAC层的设计考虑了突发型的分组数据业务的要求,能够自适应无线信道环境,速率可达几百kbit/s甚至几十Mbit/s。手机数据业务基本是一个蜂窝移动通信网,下载速率在100kbit/s以下。
作为手机数据业务的3G系统在支持IP数据业务时频谱效率低,其面向连接固定带宽的结构不适应突发式IP数据业务的需求。为此,3GPP和3GPP2都认识到目前的系统提供互联网接入业务的局限性,试图在原来的体系框架内,在下行链路中采用分组接入技术,大幅度提高IP数据下载和流媒体速率。3GPP在R5系统中增加了高速下行分组接入(HSDPA)(被称为3。5G),速率可以达到10Mbit/s以上,随后进一步在R6中增加高速上行分组接入(HSUPA),将解决上行链路分组化问题,提高上行速率,进一步引入自适应波束成形和MIMO等天线阵处理技术,可将下行峰值速率提高到30Mbit/s左右,核心网也在向全IP网演化。
HSDPA和HSUPA被称为3。5G技术,属于中期演化技术,受原体制束缚较大,性能不够理想。3GPP发现在HSDPA和ITU部署的B3G之间存在一个空档,这正是WiMAX的目标。在一段时间内的宽带无线接入市场上,HSDPA、HSUPA对WiMAX的竞争将处于劣势。
为了提高3G在新兴的宽带无线接入市场的竞争力,摆脱Qualcom的CDMA专利制约,需要发展LTE(longtermevolution)计划,以填补这一空档。为此,3GPP在2004年底发展了长期演化(LTE)计划,基本思想是采用过去为B3G或4G发展的技术来发展LTE,使用3G频段占有宽带无线接入市场。2004年12月3GPP雅典会议决定由3GPPRAN工作组负责开展LTE研究,将于2006年6月完成,2007年6月推出。
LTE概述
3GPP经过激烈的讨论和艰苦的融合,终于在2005年12月选定了LTE的基本传输技术,即下行OFDM;上行SC(单载波)-FDMA。
下行技术的选择没有经过很大的波澜。OFDM是公认的宽带无线通信的首选技术,虽然有个别公司仍试图坚持传统的CDMA技术,但绝大部分公司很早就在采用OFDM作为下行核心技术这一点上达成了共识。
上行传输技术的选择颇费了一番周折,大部分欧美设备商对OFDM的上行峰平比PAPR(将影响手持终端的功放成本和电池寿命)有顾虑,坚持采用单载波技术(具有较低的PAPR)。虽然一些公司(主要是积极参与WiMAX标准化的公司)认为可以采用某些方法解决OFDM的PAPR的问题,但并没有说服单载波阵营。
在3GPP中,3G LTE的正式名称是3G Long Term Evolution(LTE),即3GPP长期演进(LTE)项目。
3GPP长期演进(LTE)项目是近两年来3GPP启动的最大的新技术研发项目,以OFDM/FDMA为核心的技术,与其说是3G技术的"演进"(Evolution),不如说是"革命"(Revolution)。
这种技术和3GPP2AIE、WiMAX、以及最新出现的IEEE802。20MBFDD/MBTDD等,具有某些"4G"特征,被看作"准4G"技术。
在我国与LTE对应的计划被称为E3G,"863"计划中与B3G对应的Future计划被考虑用于发展E3G,参与LTE的发展工作。
3G LTE的由来
随着PDA和笔记本电脑的发展普及,用户希望能够随时随地上网,一个新的市场---"宽带无线移动接入"正在兴起。宽带无线接入技术面向一个固定和移动通信融合的新市场,它可提供与宽带有线固定接入并行的宽带无线接入业务,支持移动应用。
目前2。5G/3G手机移动数据业务和宽带无线接入业务是两个不同的市场段。宽带无线接入业务采用WiMAX(IEEE802。16d/e)固定/移动宽带无线城域网技术,核心网是标准的IP网,其无线链路的物理层和MAC层的设计考虑了突发型的分组数据业务的要求,能够自适应无线信道环境,速率可达几百kbit/s甚至几十Mbit/s。手机数据业务基本是一个蜂窝移动通信网,下载速率在100kbit/s以下。
作为手机数据业务的3G系统在支持IP数据业务时频谱效率低,其面向连接固定带宽的结构不适应突发式IP数据业务的需求。为此,3GPP和3GPP2都认识到目前的系统提供互联网接入业务的局限性,试图在原来的体系框架内,在下行链路中采用分组接入技术,大幅度提高IP数据下载和流媒体速率。3GPP在R5系统中增加了高速下行分组接入(HSDPA)(被称为3。5G),速率可以达到10Mbit/s以上,随后进一步在R6中增加高速上行分组接入(HSUPA),将解决上行链路分组化问题,提高上行速率,进一步引入自适应波束成形和MIMO等天线阵处理技术,可将下行峰值速率提高到30Mbit/s左右,核心网也在向全IP网演化。
HSDPA和HSUPA被称为3。5G技术,属于中期演化技术,受原体制束缚较大,性能不够理想。3GPP发现在HSDPA和ITU部署的B3G之间存在一个空档,这正是WiMAX的目标。在一段时间内的宽带无线接入市场上,HSDPA、HSUPA对WiMAX的竞争将处于劣势。
为了提高3G在新兴的宽带无线接入市场的竞争力,摆脱Qualcom的CDMA专利制约,需要发展LTE(longtermevolution)计划,以填补这一空档。为此,3GPP在2004年底发展了长期演化(LTE)计划,基本思想是采用过去为B3G或4G发展的技术来发展LTE,使用3G频段占有宽带无线接入市场。2004年12月3GPP雅典会议决定由3GPPRAN工作组负责开展LTE研究,将于2006年6月完成,2007年6月推出。
LTE概述
3GPP经过激烈的讨论和艰苦的融合,终于在2005年12月选定了LTE的基本传输技术,即下行OFDM;上行SC(单载波)-FDMA。
下行技术的选择没有经过很大的波澜。OFDM是公认的宽带无线通信的首选技术,虽然有个别公司仍试图坚持传统的CDMA技术,但绝大部分公司很早就在采用OFDM作为下行核心技术这一点上达成了共识。
上行传输技术的选择颇费了一番周折,大部分欧美设备商对OFDM的上行峰平比PAPR(将影响手持终端的功放成本和电池寿命)有顾虑,坚持采用单载波技术(具有较低的PAPR)。虽然一些公司(主要是积极参与WiMAX标准化的公司)认为可以采用某些方法解决OFDM的PAPR的问题,但并没有说服单载波阵营。
LTE能带来什么
3GLTE着重考虑的方面主要包括降低时延、提高用户的数据率、增大系统容量和覆盖范围以及降低运营成本等。LTE的目标主要包括以下的内容:
支持1。25MHz~20MHz带宽;
极大提高峰值数据速率(在20MHz带宽下支持下行100Mbps、上行50Mbps的峰值速率);
在保持现有基站位置的同时提高小区边缘比特速率;
有效提高频谱效率(3GPP版本6的2~4倍);
将接入网时延降低到10ms以下;将控制平面时延降低到100ms以内;
优化15km/h以下低速用户的性能,能为15-120km/h的移动用户提供高性能的服务,可以支持120-350km/h的用户;
吞吐量、频谱效率和移动性指标在5km半径的小区内将得到充分保证,当小区半径增大到30km时,只对以上指标带来轻微的弱化;
支持多种载波带宽,以满足配置系统时窄带频谱分配时的灵活性;
支持与现有的3G系统和非3GPP规范系统的协同工作:增强的MBMS(Multimedia Broadcast Multicast Service);降低CAPEX(资本支出,Capital Expenditure)和OPEX(运营支出,Operation Expenditure)的成本;
降低空中接口和网络架构的成本;
实现合理的终端复杂度、成本和耗电;
支持增强的IP多媒体子系统(IP Multimedia Sub-system,IMS)和核心网;尽可能保证后向兼容,有效地支持多种业务类型,尤其是分组域(PS-Domain)业务(如VoIP等);
优化系统为低移动速度终端提供服务,同时也应支持高移动速度终端;
支持增强型的广播多播业务;
系统应该能工作在对称和非对称频段;尽可能简化处于相邻频带运营商共存的问题。
为了实现3GLTE的设计目标,着重在空中接口传输技术和接入网结构上对现有3G系统进行改进。
在空中接口方面,一是在下行链路采用能够有效对抗多径衰落、提高频谱效率的OFDM技术;采用自适应链路技术使编码调制参数能够适应无线信道的变化,以提供更高的频谱效率和更可靠的传输性能;通过在发射端和接收端配置多个天线,从而提高系统的容量、改善系统性能;二是在上行链路采用峰均比(PAPR)较低的分布式或集中式单载波频分复用提供多址接入;在帧结构和频谱规划上,尽可能与现有3G标准相兼容,以方便终端在不同制式系统中的切换,减小未来升级带来的投入。
LTE能带来什么
3GLTE着重考虑的方面主要包括降低时延、提高用户的数据率、增大系统容量和覆盖范围以及降低运营成本等。LTE的目标主要包括以下的内容:
支持1。25MHz~20MHz带宽;
极大提高峰值数据速率(在20MHz带宽下支持下行100Mbps、上行50Mbps的峰值速率);
在保持现有基站位置的同时提高小区边缘比特速率;
有效提高频谱效率(3GPP版本6的2~4倍);
将接入网时延降低到10ms以下;将控制平面时延降低到100ms以内;
优化15km/h以下低速用户的性能,能为15-120km/h的移动用户提供高性能的服务,可以支持120-350km/h的用户;
吞吐量、频谱效率和移动性指标在5km半径的小区内将得到充分保证,当小区半径增大到30km时,只对以上指标带来轻微的弱化;
支持多种载波带宽,以满足配置系统时窄带频谱分配时的灵活性;
支持与现有的3G系统和非3GPP规范系统的协同工作:增强的MBMS(Multimedia Broadcast Multicast Service);降低CAPEX(资本支出,Capital Expenditure)和OPEX(运营支出,Operation Expenditure)的成本;
降低空中接口和网络架构的成本;
实现合理的终端复杂度、成本和耗电;
支持增强的IP多媒体子系统(IP Multimedia Sub-system,IMS)和核心网;尽可能保证后向兼容,有效地支持多种业务类型,尤其是分组域(PS-Domain)业务(如VoIP等);
优化系统为低移动速度终端提供服务,同时也应支持高移动速度终端;
支持增强型的广播多播业务;
系统应该能工作在对称和非对称频段;尽可能简化处于相邻频带运营商共存的问题。
为了实现3GLTE的设计目标,着重在空中接口传输技术和接入网结构上对现有3G系统进行改进。
在空中接口方面,一是在下行链路采用能够有效对抗多径衰落、提高频谱效率的OFDM技术;采用自适应链路技术使编码调制参数能够适应无线信道的变化,以提供更高的频谱效率和更可靠的传输性能;通过在发射端和接收端配置多个天线,从而提高系统的容量、改善系统性能;二是在上行链路采用峰均比(PAPR)较低的分布式或集中式单载波频分复用提供多址接入;在帧结构和频谱规划上,尽可能与现有3G标准相兼容,以方便终端在不同制式系统中的切换,减小未来升级带来的投入。