微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > TD-SCDMA无线网络规划的特点

TD-SCDMA无线网络规划的特点

时间:03-05 来源:C114 点击:

该以小区为单位,通过数字电子地图,依据小区的传播环境选择相匹配的传播模型,从而提高预测的准确度。

2 业务模型

第一代和第二代移动通信系统是为话音业务设计的,而3G系统则是为多媒体通信而设计的,通过该系统提供的高质量图像和视频,使人与人之间的通信能力进一步增强。目前TD-SCDMA所支持的最高传输速率为384kit/s,3GPP在R5引入了HSDPA技术,单载波的峰值速率可以达到2.8Mbit/s。这样高的传输速率使得业务的接入能力大大增强了,支持更为广泛的业务类型,包括各种视频和音频业务。因此,业务模型的预测将是3G网络规划的一个重点和难点。

众所周知,TD-SCDMA系统的一个很大特点是它的时分双工模式。它的优点是可以为上下行时隙分配不同的比例,从而更好地支持不对称业务。这个优点使得TD-SCDMA更适合承载非对称的数据业务。然而,如果组网和规划不合理,这一优点非但不能够得到体现,相反还可能出现反作用。

首先,上下行时隙比例的规划必须建立在一个准确的业务模型的基础上。这在现阶段仍然很困难。由于经济水平和技术水平的制约,用户还不习惯于利用无线接入的方式上网,目前还没有现成的无线数据网络可供统计分析,许多无线数据业务模型是参考互联网的数据模型而建立的。这样,很难得到准确的无线数据业务模型。随着经济水平的提高和TD-SCDMA商用网的建立,用户的行为习惯可能会发生改变。我们应该对无线数据业务始终进行跟踪分析,及时修正时隙比例规划。

其次,目前的时隙比例规划大多依据上下行的业务流量来制定。仅仅这样是不够的,必须考虑业务的优先级。如一个话音业务的流量为12.2kbit/s,一个视频点播业务的流量为几十或几百kbit/s。话音业务是上下行对称的,而视频点播业务则是以下行业务为主的。如果完全按照流量进行规划,则视频点播业务的大流量会导致时隙比例规划的不平衡,从而使许多话音业务没有足够的信道资源。由于话音业务的容量必须首先保证,建议在建网初期先采用对称的时隙比例,同时跟踪业务流量变化,逐步调整上下行时隙。

另外,在依据业务模型制定时隙方案时,要同时考虑系统的干扰。数据业务在地理上分布的不均匀性容易使我们倾向于不同的小区采用不同的时隙方案。但是,相邻小区的上下行时隙不一致会产生干扰,而如果所有小区都采用统一的时隙方案则会牺牲容量。相应的也有一些方法来解决这个问题,比如牺牲某些边缘小区的交叉时隙。这些方法有待在应用中验证。

3 干扰分析

基于CDMA的系统有一个典型的特征,就是网络容量和服务质量由干扰水平决定。在已经得到广泛应用的cdma20001x网络中,常常可以看到这样的现象:某些区域的无线信号电平值比较高,掉话仍有可能发生;而某些地区的电平值比较低,通话质量却很好。可见,码分多址的无线网络的服务质量主要取决于干扰水平。无线网络规划的重要任务就是预测网络的干扰,并尽可能控制干扰,使网络的性能得到充分发挥。

TD-SCDMA系统由于具有时分和空分的特点,在干扰方面与其他2种3G系统(WCDMA和cdma2000)并不完全相同。在TDD模式下,通过空分(智能天线的波束赋形)和时分(在不同的时隙分配信道)方式,可以使系统的自干扰非常轻,系统容量不再受限于干扰,而是主要受限于码字。另外,对于FDD系统来说,当用户数增加时,干扰加大,小区半径收缩,小区边缘的用户可能处于覆盖盲区或弱区,小区呼吸现象非常明显。在TDD模式下,新增的用户通过智能天线赋形和发射时隙的分隔,减轻对已激活用户的干扰,小区呼吸作用不明显。这样,TD-SCDMA的小区覆盖范围比较稳定,切换区域不易受系统负荷影响。因此,在TD-SCDMA的网络规划中,干扰比较容易估计,可以认为接近于0,只在某些特殊情况下需要考虑。

4 扰码规划

依据协议规定,cdma2000的导频相位共有512个,相邻2个导频相位相差64chip。WCDMA有8192个扰码,分为512个集合,每个集合包含1个主扰码和15个辅扰码。可以看到,cdma2000和WCDMA的扰码资源是比较丰富的。另外,cdma2000和WCDMA的导频/扰码之间具有比较好的相关性,需要产生很大的位移才会发生混淆。而产生足够大的位移需要信号在空中传播很长的距离,这时,信号的电平通常已经弱到不足以产生混淆。因此,cdma2000和WCDMA的导频/扰码规划是相对比较容易的。

TD-SCDMA系统共有128个长16chip的基本扰码序列,这128个基本扰码按编号顺序分为32个组,每组4个,每个基本扰码用于下行UE区分不同的小区。TD-SCDMA的扰码是PN码,具有很好的相关性。但是由于码序列比较短

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top