多载波调制在通信系统的应用
时间:01-25
来源:中国联通网站
点击:
1、多载波调制MCMMSM的由来
近年来,高速率通信系统发展很快,可以看到很多不同的通信系统采用"多载波调制MCM(Multiple Carrier Modulation)"或"多路副载波调制MSM(Multiple Subcarrier Modulation)"的技术方案。不论电通信或光通信,也不论有线通信或无线通信,都有实际使用MCM?MSM的情况。具体地说,无线电射频通信、光纤通信以至光无线通信等通信系统,凡是传输较高数字速率的系统就有可能利用MCMMSM。
所谓多载波调制是指传送线路上每次传送信号时利用多个不同的但依次排列的载波,每路载波各自受到数字信号的调制。这些载荷数字信息信号的多路载波一同沿线路向接收端传送。如传送线路有不良的频率选择性和多途径通路等情况,用了多载波调制可以有效地减小"符号间干扰ISI(Inter-symbol Interference)"。因此,MCM对于实现高速数字通信非常有利。
有类似的情况:例如在射频无线电通信,曾经使用"正交频分多路OFDM(Orthogonal Frequency Division Multiplex)",证明确有成效,因而很多情况曾经或正在实际使用OFDM,包括无线移动通信蜂窝网基台以及数字电视、不对称数字用户线(ADSL)和有些局域网(LAN),都曾经使用OFDM,收到一定效果。另一些多路用途,包括城市的"有线电视CATVCable Television?",它在光纤线路上利用"副载波多路SCM(Sub carrier Multiplex)",同时传送多路模拟电视信号。在有些"局域网",利用SCM传送多路数字光信号,容许直接检测,可以降低成本。
2、多载波调制在光无线通信的应用
在光无线通信,多路副载波调制MSM受到优先考虑,因为利用了MSM,可以实现高速数字通信而不需要均衡。过去大多使用单路载波调制,包括开关键控OOK和M进制脉冲位置调制。现在MSM是让多路副载波载荷的电信号对一个光载波进行调制。这可以用信号强度调制IM,或用调频FM、调相PM。最简单的MSM系统是利用直接检测的强度调制(IMDD),设备简单。这样利用多路宽带副载波,可以减少多途径信号的码间干扰,也可以防止其它的噪音干扰。但是,在这样IMDD的MSM系统,光的平均功率效率较差,这是它的主要缺点。这是因为多路副载波的电信号是受调制的正弦波的总和,既有正值又有负值,而光强度瞬时功率必须不是负的。因此对于多路副载波的电信号必须加直流偏置,才能对光载波强度进行调制。在利用MSM的光无线系统,需要使用分组码藉以减小直流偏置并改善系统的功率效率。对此,可考虑使用"副载波信号点序列SSPS?Subcarrier Signal Point Sequence?",每一符号由多路副载波传送,就是说,每一符号在几个副载波上有信号点。这就可能减小直流偏置,从而提高系统的功率效率。
高速数字通信系统原来使用"通断键控OOK(on-off Keying)"和"M进脉位调制MPPM(M-ary Pulse Position Modulation)"等制式,都是属于单载波调制系统。这样的系统传送宽频带信号如符号率超过10Mbaud,则在传送过程中如遇到多径分散的情况必将发生"符号间干扰ISI(Inter-symbolInterference)"。而在改用多路副载波调制系统以后,在同样高速率传送,每一路副载波的符号率将低于原来的单载波系统载波的符号率,因此受到畸变很小,可以不需要均衡。另外,多路副载波系统需用的器件,可以是微波所用的器件,比光器件容易制作,并且微波振荡器的稳定性和微波滤波器的频率选择性都优于相应的光器件特性。而且,射频振荡器的相位噪声低,它用来制作相干检测要比光相干检测容易实现。
多路副载波调制的传输系统使用的发信机和收信机,可以采取四进制移相键控的制式QPSK(Quater nary Phase Shift Keying)。发信机用N路副载波ωn(n=1,2,…N)。在每一符号的持续时间T以内,发信机发送K个信息比特。编码器把K个信息比特变换为一个具有符号幅度am的矢量。因为MSM信号s(t)可能有正的或负的,所以发信机增加一个基带偏置信号b(t)使MSM复数没有负的,即x(t)=A[s(t)+b(t)],其中A是正的因数。这样,平均光功率将是ρ=AE[s(t)]+AE[b(t)]。一般地,这个基带偏置信号b(t)是一个常数与一个基带脉幅调制(PAM)信号之和,如采用矩形的发送脉冲,则载波频率ωn=n(2π/T),n=1,2,…M,E[x(t)]=0,不管怎样的信号集am。因此平均光功率只是取决于偏置信号:ρ=AE[b(t)]。
所以,只要适当选择偏置信号,就可以减小平均光功率。偏置可以是固定偏置,也可以是随时间变化的偏置。固定偏置的值可以与MSM信号的最小值相同。随时间变化的偏置可以用符号间最小容许的偏置,它可以使平均功率较小。
3、大气光通信对多载波调制的影响
在大气中传送的光无线通信可以考虑采用多路副载波调制MSM。大气光通信的优点是它在设计完善以后不受无线电干扰、城市噪音和电子脉冲冲击等不良影响。在实际应用,大气光通信可以用作"无线接入线WLL(Wireless Local Loop)",使用户连接城市通信网。当然,在大气中传送的光波一般不是可见光而是红外波。它们在传输过程中必将遇到大气的分子吸收以及散射和湍流等影响。在晴朗天气,大气中有些分子引起各种吸收带,相应地引起接收光束的起伏变化。微热起伏引起折射率变化而发生的湍流也将引起接收光束的起伏。已经确认,大气光通信系统使用MSM,将使大气通路得到良好性能。
在试验大气光通信系统时,曾经使用二进制移相键控BPSK和二进制脉位调制BPPM,互相作比较。在晴朗天气、各种闪烁情况下,对两种制式的误码率与信噪比关系作比较,结果显示BPSK比BPPM优约3dB。这两种系统都不需对接收机门限作估计,而在使用通断键控OOK时,都有必要对接收机门限作动态估计。
总的结论认为:大气无线光通信系统确实有必要使用多路副载波调制系统MSM,藉以得到较好的通信性能。
近年来,高速率通信系统发展很快,可以看到很多不同的通信系统采用"多载波调制MCM(Multiple Carrier Modulation)"或"多路副载波调制MSM(Multiple Subcarrier Modulation)"的技术方案。不论电通信或光通信,也不论有线通信或无线通信,都有实际使用MCM?MSM的情况。具体地说,无线电射频通信、光纤通信以至光无线通信等通信系统,凡是传输较高数字速率的系统就有可能利用MCMMSM。
所谓多载波调制是指传送线路上每次传送信号时利用多个不同的但依次排列的载波,每路载波各自受到数字信号的调制。这些载荷数字信息信号的多路载波一同沿线路向接收端传送。如传送线路有不良的频率选择性和多途径通路等情况,用了多载波调制可以有效地减小"符号间干扰ISI(Inter-symbol Interference)"。因此,MCM对于实现高速数字通信非常有利。
有类似的情况:例如在射频无线电通信,曾经使用"正交频分多路OFDM(Orthogonal Frequency Division Multiplex)",证明确有成效,因而很多情况曾经或正在实际使用OFDM,包括无线移动通信蜂窝网基台以及数字电视、不对称数字用户线(ADSL)和有些局域网(LAN),都曾经使用OFDM,收到一定效果。另一些多路用途,包括城市的"有线电视CATVCable Television?",它在光纤线路上利用"副载波多路SCM(Sub carrier Multiplex)",同时传送多路模拟电视信号。在有些"局域网",利用SCM传送多路数字光信号,容许直接检测,可以降低成本。
2、多载波调制在光无线通信的应用
在光无线通信,多路副载波调制MSM受到优先考虑,因为利用了MSM,可以实现高速数字通信而不需要均衡。过去大多使用单路载波调制,包括开关键控OOK和M进制脉冲位置调制。现在MSM是让多路副载波载荷的电信号对一个光载波进行调制。这可以用信号强度调制IM,或用调频FM、调相PM。最简单的MSM系统是利用直接检测的强度调制(IMDD),设备简单。这样利用多路宽带副载波,可以减少多途径信号的码间干扰,也可以防止其它的噪音干扰。但是,在这样IMDD的MSM系统,光的平均功率效率较差,这是它的主要缺点。这是因为多路副载波的电信号是受调制的正弦波的总和,既有正值又有负值,而光强度瞬时功率必须不是负的。因此对于多路副载波的电信号必须加直流偏置,才能对光载波强度进行调制。在利用MSM的光无线系统,需要使用分组码藉以减小直流偏置并改善系统的功率效率。对此,可考虑使用"副载波信号点序列SSPS?Subcarrier Signal Point Sequence?",每一符号由多路副载波传送,就是说,每一符号在几个副载波上有信号点。这就可能减小直流偏置,从而提高系统的功率效率。
高速数字通信系统原来使用"通断键控OOK(on-off Keying)"和"M进脉位调制MPPM(M-ary Pulse Position Modulation)"等制式,都是属于单载波调制系统。这样的系统传送宽频带信号如符号率超过10Mbaud,则在传送过程中如遇到多径分散的情况必将发生"符号间干扰ISI(Inter-symbolInterference)"。而在改用多路副载波调制系统以后,在同样高速率传送,每一路副载波的符号率将低于原来的单载波系统载波的符号率,因此受到畸变很小,可以不需要均衡。另外,多路副载波系统需用的器件,可以是微波所用的器件,比光器件容易制作,并且微波振荡器的稳定性和微波滤波器的频率选择性都优于相应的光器件特性。而且,射频振荡器的相位噪声低,它用来制作相干检测要比光相干检测容易实现。
多路副载波调制的传输系统使用的发信机和收信机,可以采取四进制移相键控的制式QPSK(Quater nary Phase Shift Keying)。发信机用N路副载波ωn(n=1,2,…N)。在每一符号的持续时间T以内,发信机发送K个信息比特。编码器把K个信息比特变换为一个具有符号幅度am的矢量。因为MSM信号s(t)可能有正的或负的,所以发信机增加一个基带偏置信号b(t)使MSM复数没有负的,即x(t)=A[s(t)+b(t)],其中A是正的因数。这样,平均光功率将是ρ=AE[s(t)]+AE[b(t)]。一般地,这个基带偏置信号b(t)是一个常数与一个基带脉幅调制(PAM)信号之和,如采用矩形的发送脉冲,则载波频率ωn=n(2π/T),n=1,2,…M,E[x(t)]=0,不管怎样的信号集am。因此平均光功率只是取决于偏置信号:ρ=AE[b(t)]。
所以,只要适当选择偏置信号,就可以减小平均光功率。偏置可以是固定偏置,也可以是随时间变化的偏置。固定偏置的值可以与MSM信号的最小值相同。随时间变化的偏置可以用符号间最小容许的偏置,它可以使平均功率较小。
3、大气光通信对多载波调制的影响
在大气中传送的光无线通信可以考虑采用多路副载波调制MSM。大气光通信的优点是它在设计完善以后不受无线电干扰、城市噪音和电子脉冲冲击等不良影响。在实际应用,大气光通信可以用作"无线接入线WLL(Wireless Local Loop)",使用户连接城市通信网。当然,在大气中传送的光波一般不是可见光而是红外波。它们在传输过程中必将遇到大气的分子吸收以及散射和湍流等影响。在晴朗天气,大气中有些分子引起各种吸收带,相应地引起接收光束的起伏变化。微热起伏引起折射率变化而发生的湍流也将引起接收光束的起伏。已经确认,大气光通信系统使用MSM,将使大气通路得到良好性能。
在试验大气光通信系统时,曾经使用二进制移相键控BPSK和二进制脉位调制BPPM,互相作比较。在晴朗天气、各种闪烁情况下,对两种制式的误码率与信噪比关系作比较,结果显示BPSK比BPPM优约3dB。这两种系统都不需对接收机门限作估计,而在使用通断键控OOK时,都有必要对接收机门限作动态估计。
总的结论认为:大气无线光通信系统确实有必要使用多路副载波调制系统MSM,藉以得到较好的通信性能。
多载波 相关文章:
- TD-HSDPA关键技术与网络部署(03-01)