0.5umCMOS新型电流反馈放大器的分析与设计
1 引 言
随 着 MOS 器件应用的广泛, 基于CMOS 电路结构的电流反馈运算放大器 (CFOA)由于理论上有无限制的转换速率和闭环工作时具有与增益无关的带宽,在 高速A/D 和D/A 转换器,高速数据采集、传感器、电源、视频、射频等高频高速电 子系统中被广泛采用。CFOA 与传统的VFOA 相比具有许多优点,最主要的特 点是CFOA 的输入级抛弃了差动电路,而采用互补跟随电路,提高了输入级转换速 率;同时其闭环带宽与增益无关,不存在增益带宽积的限制。但电源电压大部分都 大于±1.5V,功耗比较大,但这一状况会随着CMOS 工艺的成熟而得到解决,尽可 能地降低电路的电压和功耗是模拟集成电路的发展趋势,已经受到国际上的广泛关注。
文献中电路单位增益带宽比较低,又由于电压模式的带宽增益积为常数, 因此在处理高频信号时,增益会变的很低。另外文献中转换速率也很低,不 适合处理高速信号。中电路达到了很小的功耗,但其它的性能还有改善的余地。 本文在它们的基础上,设计了一种基于改进型第二代电流传输器(Second-generation Current Conveyor,简称CCⅡ)的CFOA.经过仿真可知,大部分的指标都有了一定 程度的改进。
2 放大器的设计
图 1 为本文设计的电路结构,M1、M2、M3、M4 构成输入缓冲级。Z 是高阻抗输出端。假设在反相端产生电流I1-I2=In,则此电流通过由M1—M8、M28—M29 组 成的电流镜传输到Z 端,然后转换成电压进行下一级放大。设开环跨阻增益为Z ( jf ), 则:
并在电路中采用MOS 管M15—M18 实现的串联电阻与电容C1 和M19 形成的电容 进行相位补偿,并消除C1 和M19 电容带来的低频零点 。显然,从反向输入 端到Z 端,中间线性传输的物理量是电流,而且电流变化的幅值在理论上没有限制, 这就是CFOA 能获得高速特性的根本原因。
3 电路分析
3.1 输入级分析
在图 1 电路中,由M1—M8 和M28-M29 组成电路的输入级,V+端是同相输入 端,具有高输入阻抗。V -端是反相输入端,具有低输入阻抗,同时M3、M4 的推挽 结构也形成低输出阻抗,便于信号电流的流进或流出。M1、M2、M3 和M4 的互补 结构迫使V -跟随V+ ,反相输入端的电流In=I1-I2 ,其中I1、I2 分别为M3、M4 MOS 管的源极电流,当反相输入端信号电流为零时,I1=I2 。M20-M27 输入级提供1μA 的偏置电流。当同相端V+输入正极性信号时,反相端的输出电流由M3 提供;当 同相端V+输入负极性信号时,反相端的输入电流由M4 管提供。全电路的差模跨导增益为:
共模跨导增益为:
由公式(2)和(3)可得到:
在等式中gm 代表M3 的跨导, R 为M1 的源极电阻, r 代表M3 源极电阻。
3.2 输出级分析
CFOA 的电平转移级中,M11、M12 完成电平转移的功能,还有一个作用是隔离 输出级与中间放大级,避免输出级影响中间放大级。CMOS 互补放大器作为输出级, 具有较大的电压增益,但有一个缺点,输出阻抗太大,导致带负载能力较差。本文设计的输出级采用电阻反馈,用来减小输出电阻,改善其驱动性能。
输出级的电压增益为:
互补输出级经过密勒等效后的小信号电路如图2 所示.等效后的小信号电路如图3 所示.设K=Vout13 Vout11 ,根据密勒定理,可得到:
求输出阻抗时是在输入短路的情况下求得所以很显然, K 值无穷大, 由 R2 = R × K/ K?1得R2 = R ,故输出阻抗R0 = rds13 // rds14 // R。可见,加反馈后的输出电阻减小 了很多,仿真结果也证明了这一点。
- 德州仪器高性能模拟运放产品系列介绍集锦(11-13)
- CMOS求和比较器在PWM开关电源控制中的应用(11-27)
- 如何将CMOS LDO应用于便携式产品中(01-15)
- 2.5 Gb/s 0.35μmCMOS光接收机前置放大器设计(01-22)
- 用于下一代移动电话的电源管理划分(08-28)
- 不同电源供电的器件间的桥接(04-27)