微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 基于微差原理的A/D转换方法分析应用

基于微差原理的A/D转换方法分析应用

时间:11-24 来源:互联网 点击:

改接D/A转换器输出缓冲放大器的输出端U0即可。电路如图2-2所示。其绝对增益为 Dp———写入D/A转换器的数据。

\

由式(2—1)可见,可编程增益放大器可实现的增益设定范围为1~4 096。

(4)减法器

减法器由高共模抑制比的仪用放大器组成。其输出vD为 vD=vI-VC(2—2) 式中vI———经多路开关选择的某一路被测量; VC———比较电压发生器的输出电压。

2.2 测量方法与结果计算

微差法的设计思想是:不直接对被测量x进行测量,而是取一个与其相差较小的高精度标准量N,测出它们的差值(N-x),然后再根据公式x=N-(N-x)计算出被测量。被测量与标准量的差值越小,测量结果的精度就越高[3]。基于这一原理,将输入电压vI与标准量(比较电压VC)相比较,通过减法器得到两者的差值,再由可编程增益放大器和A/D转换器实现对这一差值的精确测量,就可还原出输入信号vI的数值:式是 

\

vD———微差量,即减法器的输出电压;

v0———可编程增益放大器的输出电压;

DC———写入比较电压发生器的数据;

D0———A/D转换器的输出数据;

Dp———写入可编程增益放大器的数据;

u———单位数字量表示的模拟电压。

记vI=Diu,则

\

这就是测量结果数据合成公式。若要计算Di的变化量ΔDi,只要在每次测量某一通路时,选用同一比较电压,即DC保持不变,就可得到:

ΔDi=DtΔD0/212(2—5)

3 固定相对微差的测量方法  

放大器的增益设定应满足以下原则:

(1)在同一输入信号的反复测量中,应采用同一比较电压VC和同一增益设定值Ap,这样在计算输入信号的变化量时,可避免引入系统误差;

(2)可编程增益放大器的增益不宜过大或过小,取值应依据微差量的变化范围而定。

依据这一原则,取被测量vI与比较量VC的最大允许偏差为微差量vD的量程LD。可知LD与A/D转换器的量程L的关系为:

\

下面举例说明放大器增益设定的方法:若单位数字量表示的模拟电压u=1 mV,输入信号vI=100mV±5%,则取比较电压VC=100 mV,相对微差r=5%,得比较电压发生器的预置数DC=100,可编程增益放大器的预置数Dp=rDC=5。这时微差量vD的量程LD为5 mV。

4 测量性能的改善效果

4.1 分辨率

从式(2—4)来看,测量结果占有24位2进制数。但这并不表明测量结果具有24位分辨率。根据式(2—4),当且仅当微差量的量程LD=1 u时,测量结果可表示如下:

Di=DC+D0×2-12

这时Di的整数部分为DC,小数部分为D0。DC、D0没有重叠,才能实现24位分辨率。实际上,容易推出测量电路的分辨率k为

\

式中L———A/D转换器的量程。

 

可见,测量电路的分辨率不固定,随着输入信号幅值的降低而提高,有利于提高测量精度。

 

4.2 相对误差

由于可编程增益放大器的作用,微差量vD的测量分辨率可达到2-12,即测量结果的绝对分辨率为2-12 LD。在不考虑其它因素影响的情况下,可认为这就是测量结果的绝对误差。从而测量结果的相对误差η为

\

由于相对微差r为预先设置的常数,所以vI的相对误差基本固定。例:当r=6.25%时,可使相对误差达到2-16数量级。可见,这种方法不仅实现了分辨率的提高,而且具有小信号输入时有效位数不损失的特点。而普通的测量方法其精度是按满量程的相对误差来评定的,不能实现固定相对误差的测量。图4—1所示为相对微差r=6.25%时普通测量方法(图中虚线)和微差测量法(图中实线)的相对误差与输入信号vI大小的关系曲线。从图4—1可知,对于大到4 095 u、小到16u的信号,均能实现16位有效数字(2进制)的测量。如果由16位A/D转换器取代微差法直接测量是不能实现以上效果的。

4.3 输入信号变化量的测量精度

首先讨论影响ΔvI的因素。输入信号的零位误差和减法器的失调电压虽然会影响测量结果vI的精度,但不影响其变化 量ΔvI的精度。另外,只要两次测量时采用相同的比较电压VC,则比较电压VC的误差就不会影响ΔvI(这里不考虑D/A转换器的重复性误差)。至于传输通道的增益误差由3个环节决定:第1个是减法器,由高精度仪用放大器实现;第2个是可编程增益放大器,由12位D/A转换器DAC1230 实现;第3个为A/D转换器。其中前2个环节的增益精度由器件制造精度保证,不需调整。整个通

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top