锁定放大器在测试系统中抗噪声的应用研究
图2 锁定放大器的组成结构原理图
信号通道
信号通道位于相关器之前,由输入放大器、低噪声前置放大器、各种有源滤波器和放大器组成。其作用是放大弱信号到足以推动相关器工作的电平,并兼有抑制和滤除部分噪声和干扰的功能,扩大仪器的动态范围。其前置放大器最佳信号源电阻必须能够与不同传感器进行噪声匹配以得到最佳噪声特性。
参考通道
其作用是输出和输入信号同步的、占空比为1 :1 的、具有一定幅度的对称方波,以驱动相关器。由触发电路、倍频电路、相移电路、方波产生和驱动电路等组成。
直流放大器
这也是锁定放大器的一个重要部分,在图中没有画出。其主要的功能是将积分器输出的直流或缓变信号放大,使其满足后续数据采集系统对信号的要求。直流放大器的主要问题是零漂的影响,考虑到前级相关器的输出可能很小,因此应选择低漂移的运算放大器作为直流放大器的前置级,同时要有尽量小的1/f噪声。
激光烟雾衰减测试系统的构成及锁定放大器的应用
激光烟雾衰减测试系统的构成
红外系统本质上是一个光学—电子系统,其基本功能是将接收到的红外辐射转换成为电信号并利用它去达到某种实际应用的目的。激光烟雾衰减测试系统是一个典型的红外系统,因而具有一般红外系统所具有的特征:既包括光学系统、调制盘、红外探测器、电子线路和显示纪录装置等。连续的红外辐射调制盘调制成交变信号输出,在传输过程中受到大气中某些气体分子的选择性吸收和红外烟雾中悬浮微粒(气溶胶)的散射而衰减,上述被衰减的红外辐射被光学系统接收并聚焦到红外探测器响应平面上,红外探测器将红外辐射转变为电信最终分析处理,这就是激光烟雾衰减测试系统的工作原理。
如上所述,本系统的结构简图如图3(这里只画出接收部分)所示。
图3 激光烟雾衰减测试系统接收部分简图
从图3中可以看到,锁定放大器可以应用在探测器后面的信号调理电路中,对探测器传来的反映激光强度大小的电信号进行去噪声处理,之后将信号送给下一级的数据采集系统进行解释分析。其工作过程如下:红外激光信号及红外背景噪声一同通过光阑,经光学调制盘调制后变成交流方波信号,再经过光学系统射入红外探测器的光敏面上,探测器输出与激光强度有一定关系的正弦波交流信号送入锁定放大器进行测量,测量后的结果经信号调理电路进行处理后将被送往下一级数据采集系统进行记录和分析处理。相关放大器的参考信号是由控制光学调制盘的振荡源给出的。由图中可以看出,相关放大器在本系统中起着承上启下的作用,地位非常重要。
锁定放大器在实际应用过程中需要注意的几个问题
这里需要说明:锁定放大器虽然具有很多优点,但它在实际应用过程中有几个问题需要注意。相关解调器的测量时间及对测量结果的影响图1 所示的相关解调器的积分运算,一般是采用RC低通滤波器来实现,这种低通滤波器相当于时间常数为3RC—5RC的积分器。因此,相关解调器的积分时间不能无限长(任何信号都不可能做到测量时间无限长)。显然,有限长时间内的互相关运算不可能完全去除噪声。在允许的情况下,测量的时间越长,可以检测的信号越小。
参考信号的获取
相关器是锁定放大器的关键部件。在进行相关运算时,必须要有一个幅度恒定、与信号同频率的方波参考信号。在很多锁定放大器的应用场合,这个参考信号可以从振荡器获得(如图中所示),再使被测信号也具有这个频率,这样就实现了同频的要求,进而就可以完成在观测噪声中正弦信号幅度的检测。一般来讲,商品化的斩波器中都有参考信号的输出可供使用。另外,其幅度通常应大于100mV以上。
参考信号的相位
在检测时不可能预先知道被测信号的相位,因此相关解调器中必须设置参考信号的移相电路,以调节相位达到与被测信号相同或反相。相位的变化应能够在0—360度范围内进行调整。
锁定放大器的信噪比改善程度
锁定放大器的信噪比改善程度为SNIR=2Bin/△fn,Bin为相关解调器前面带通滤波器的带宽,△fn是低通滤波的噪声带宽。由于△fn 远远小于Bin ,因此信号的信噪比将大大改善。但是当噪声过大时,器件的非线性特性使乘法器不再具有理想乘法特性,进入过载状态,此时的相关解调器输出信噪比迅速恶化,因此,在应用设计时应尽量使相关解调器具有大的过载能力; 此外, △fn过小会使测量时间过长,因此应该认识到:相关解调器的信噪比改善程度是有限的。
结 语
从上面的讨论可以看出,激光烟雾衰减测试系统中的调制
- 使用简化电路的高压放大器(11-21)
- 无需调谐的“砖墙式”低通音频滤波器(11-20)
- 对数放大器的技术指标(11-26)
- 一种增大放大器增益的方法(11-28)
- 对数放大器的典型应用 (11-26)
- AGC中频放大器的设计 (11-29)