微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 多功能充电器的设计

多功能充电器的设计

时间:11-10 来源:互联网 点击:

减小,以恒压方式充电。

1.3 电压检测电路  

通过电压检测电路,对电池电压检测,达到识别电池充电状态以便进行控制的目的。电路由两个运放U1C、U1D、三极管T4和T5以及电阻R21~R26、电容C6、二极管D4构成,其中U1D组成积分电路,U1C作上、下限电压比较器。这里,当三极管T5截止时上限电压为基准电压5V;当三极管T5饱和导通时下限电压由R25、R26分压确定,取R25= R26,则下限电压2.5V(电阻值较大T5的饱和压降很小),从而保证运放工作在线性区。 

由电路可知,开关三极管T4控制积分电容的充电和放电,当其饱和导通时,电容C6充电。若忽略电阻RX的压降(因RX=RF其压降不大于160mV),取R21=R22则充电电流IC=0.5U bt/R24(略去管压降);而当T4截止时,使电容C6放电,则放电电流ID=0.5Ubt/(R23 +R24);取R23=470kΩ,R24=5.1kΩ,RX=RF=0.5Ω,则R23>>R24,放电比充电缓慢得多,且放电过程不受开关三极管T4的影响,因此,利用放电过程来检测电池电压可保证较高的精度。

运放U1D输出电压从5V降到2.5V,即电容C6的端电压因放电下降ΔU=5-2.5=2.5V时,所需时间T可由下式导出:  

根据C6= dq/dU (dq——电容电荷增量,dU——电容电压增量)得
dq=C6dU 流经电容C6的电流 ID= dq/dt =C6dU/dt 也就是ID·dt=C6·dU
对两边定积分得
ID·T=C6ΔU 即
T = C6ΔU/ ID=C6·2.5(R23+R24)/(0.5Ubt)
将R23=470kΩ,R24= 5.1kΩ,C6=0.1μF代入上式可得
T = 237.55ms/Ubt(Ubt单位为伏时,T单位为ms)    

可见放电时间T仅与电池电压成反比,1/T与Ubt是线性关系。

当Ubt=8V时,可得T8=29.69ms,这对于采用6MHz晶振的单片机而言,因其计时可精确到2μs,故可以做到很高的精度,很容易使电压检测电路的分辨率达到5mV。由于是积分检测,故对电池电压的高频干扰完全可以消除,因此工作稳定可靠。

1.4 电池最高温度检测电路  

利用GMS97C2051内部比较器和手机电池内设置的热敏电阻就能实现电池最高温度检测控制。原理图中,内部比较器反相输入端接2.5V作为比较基准电压,电阻RP与电池内热敏电阻Rt(未画出)对5V基准电压的分压作为被检测电压, 接内部比较器同相输入端P1.0。由于Rt为负温度特性,当电池温度升高时,Rt的阻值相应减小,其分压即被检测电压也同时降低,当低于2.5V时,内部比较器输出(P3.6)低电平,这时即认为电池温度达到最高控制温度。

1.5 放电电路  

放电电路由三极管T6和电阻RD组成,并受单片机P3.7控制,放电电流大约为IDIS=Ubt/RD。

2 编程控制实现方法

2.1 I/O口分配  

P1.2输入检测放电请求键DIS-K的状态;P1.3输入检测恒压控制反馈开关SW的状态,以确定充电模式;P1.5和P1.7输出驱动LED作充电器状态显示;P3.2、P3.3和P3.4为电压检测(单积分A/D转换)专用,P3.4输出驱动T4用以控制积分电容C6的充电和放电;P3.2输出驱动T5用以选取比较基准电压5V或2.5V;P3.3输入检测电容C6从5V放电到2.5V时的时间T(与单片机定时器配合);P3.5输出驱动T2用以控制电池充电;P3.6输入检测电池最高温度;P3.7输出驱动T6用以控制电池放电。

2.2 程序功能及实现方法  

程序采用模块结构,主要有定时中断及I/O刷新子程序,A/D转换及滤波子程序,锂离子电池充电方式控制及其状态识别子程序,镍镉/镍氢电池充电方式控制及其状态识别子程序,主控程序。各程序模块的功能如下:

⑴ 定时中断及I/O刷新子程序

提供时间基准;

输入刷新,即读入P1.2、P1.3、P3.6状态,并使相应的软标志置位或复位;

输出刷新,即根据输入刷新和程序状态识别处理结果,通过P1.5、P1.7、P3.5和P3.7进行输出控制。

⑵ A/D转换及滤波子程序

将模拟电压转换为数字量,通过数字滤波处理提高抗干扰能力和可靠性。它是识别电池充电状态的基础。

⑶ 锂离子电池充电方式控制及其状态识别子程序

锂离子电池充电方式是当电池电压低于4.2V时,以恒流方式充电;当电池电压达到4.2V时,以恒压方式充电。这由硬件保证。另外还有充电45秒停充电1秒的要求,这由软件实现。

锂离子电池充电状态是由充电电流进行识别的,一般认为当充电电流减小到最大充电电流(恒流)的10%时可认为电池充满。为了间接检测充电电流,在电流回路中窜入一电阻Rx,使流经Rx的电流变化转换成电压变化,再配合充电状态下的A/D 转换数值和停止充电状态下的A/D 转换数值的比较结果,就能识别是恒流方

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top