微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 绿色混合数字计算电源管理

绿色混合数字计算电源管理

时间:10-19 来源:互联网 点击:


 

(2)可编程性和用户接口

市面上的多相数字PWM解决方案确实提供了对环路响应进行编程而不需要对硬件电路进行修改的优点,但仍然需要通过微小的电路修改对许多其他功能进行微调。全数字方案非常倾向于算法驱动方式,且因厂商的不同而异。通常,客户不会成为解决方案方面的专家,或者可能只有1~2名工程师完全理解该控制器。因此,数字解决方案的稳健性和可靠性严重依赖于厂商的支持。

混合数字方案提供了模拟控制环路来实现世界一流的瞬态性能,以及PMBus接口来实现可编程性和用户接口。控制环路可编程性可按需要来实现而不会产生全数字解决方案的高偏置电流缺点。精通模拟解决方案的电源工程师通常非常容易理解这一点,因而出错机会更小,更有可能在第一次就成功。

(3)环路和瞬态响应

由于DAC和ADC转换延迟,数字控制器的环路带宽通常限于不超过100kHz范围,而模拟和混合数字控制器可以超过100kHz,如图5所示。图6显示慢速环路的响应速度将会更慢并产生更高的过冲和下冲。模拟环路对负载和输入瞬态的响应快很多,最小化了输入和输出干扰,导致更小的输入和输出滤波器尺寸。尽管非线性技术通常用于加快数字控制器的响应速度,但它会在宽负载范围上造成不一致的响应,如图7所示,其原因在于离散阈值的触发。此外,非线性控制会导致不均匀的脉冲分布和低劣的电流均衡能力,如图9所示。与用于数字控制器的非线性控制方案相比,Intersil的混合数字控制器ISL6367/67H [9,10]使用的线性控制可产生平滑的负载阶跃响应和均匀分布的相位脉冲,如图8和图10分别所示。


图6,慢速环路与快速环路瞬态响应。


图8,采用Intersil的线性控制的瞬变。

图10,线性控制1MHz瞬变的相位转换顺序。

(4)DC性能

与模拟解决方案的无限分辨率相比,全数字解决方案常常具有由于ADC分辨率和PWM分辨率而产生的量子化误差。另外,电源状态的纹波变化也会影响稳压精度,如图11所示。混合方案保持了模拟方案的高精度。

数字控制器常常声称在环境条件、老化和元件变化下具有更小的Vout漂移。对数字控制环路补偿部分(没有外置R和C)是真的,但包括输出滤波器(电感和电容)在内的功率系的特征仍然会随着环境温度、老化和元件变化而变化。校准可以改进精度,特别是在电流侦测中,但它会增加成本(参见E部分)。除非在每次上电时进行校准并对控制环路进行重新配置,否则数字解决方案将仍然会有易受环境变化影响的缺点。此外,低DCR(0.15mOhm或更小)电感将会继续增多这样的影响,在全数字控制器的情况下这将要求更高分辨率的ADC,亦即更高的偏置电流。

数字解决方案的DC精度受PWM分辨率的影响[2];例如,200ps PWM分辨率会对1MHz 开关频率下的12V输入产生2.4mV误差。


图11,来自VID加载的输出失调(10A)

(5)校准

全数字解决方案常常宣扬其校准功能,因为它们常常需要进行校准来实现与混合方案相同的精度。校准是复杂和非免费的,常常需要外置MOSFET和精密侦测电阻,如同厂商B的解决方案一样。这些附加元件通常价值超过0.20美元,同时还会增加用电量。

(6)相倍增器兼容性和上电顺序

相数倍增器常常用于高相数和超频应用[3]。通道之间的电流均衡对设计稳健和可靠的系统极其重要。市面上实现通道电流均衡的相数倍增器仅为5V PWM输入逻辑[11,12],且不兼容3.3V数字控制器。数字控制器一直使用没有电流均衡功能的相数倍增器,这会产生长期可靠性较差和可能造成系统发热事件。Intersil相数倍增器集成电路的卓越相间电流均衡请参见图12。


图12,Intersil相倍增器在负载瞬变期间的通道电流均衡

在服务器领域,可产生最佳效率的典型驱动器电压为5V,这是不同于数字控制器的偏置电压的,它使上电顺序和保护复杂化;出现了三种可能情景:

1) 驱动器首先上电。 驱动器检测到PWM低并接通低端MOSFET来给输出放电;系统将不允许预充电启动。

2) 数字控制器首先上电。驱动器检测到PWM高或者在驱动器电压变慢时检测到一个全占空比PWM信号;系统将失去软启动并导致高端MOSFET的过应力。

3) 驱动器和控制器由同一个启用信号控制。在断电期间由于高端MOSFET短路,CPU将不会受到保护,因为驱动器已被禁用。

(7)系统保护

数字控制器需要数字化电压和电流信息,然后再将其转换回模拟信息,这一切全都在控制环路内部进行。这通常导致比模拟环路更慢的响应,如图5所示。另外,由于控制环路中的ADC和DAC,数字控制器将对需要立即予以响应的故障(如输出短路、高端MOSFET短路或

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top