微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 18脉波H级绝缘干式整流变压器

18脉波H级绝缘干式整流变压器

时间:05-30 来源:互联网 点击:

由于硅钢片的磁通密度b受到材料的限制,一般仅能设计到1.4-1.8特斯拉,而φ=bs,所以,要增大φ,一般只能增大铁心的截面积。变压器的铁心一般为三相柱式,铁心的截面积按照上述公式可以确定,铁心窗口的大小则要考虑把线圈放进去为原则。容量越大的变压器,导线越粗,铁心的窗口就需要越大。在变压器的设计中,铜和铁的用量可以均衡考虑。因为一旦变压器的容量确定了,电流就确定了,导线的粗细也就确定了,增大匝数w,磁通φ就可以小一些,铁心的截面积就可以小一些,但是要把这些匝数绕进去,铁心的窗口要大一些;相反,减小匝数w,磁通φ就要大一些,铁心的截面积要大一些,但是铁心的窗口可以小一些。

3.3 谐波电流问题

由于整流元件的单向阻断作用会引起整流变压器交变磁场波形的畸变,即使电网电压为理想的正弦波,整流装置从交流电网中取用的电流也是非正弦的。谐波产生的另一个原因是由于非线性负载。当电流流经线性负载时,负载上电流与施加电压呈线性关系;而电流流经非线性负载时,则负载上电流为非正弦波,即产生了谐波。

整流器和逆变器产生的谐波电压、电流:整流器的作用将交流电转成直流电,而逆变器是将直流电转变成交流电。其电路中的二极管视为理想二极管,即正向阻抗接近零,反向阻抗无穷大。因此,只允许电流单方向流动,从整流器的输出端看,每相电流波形为矩形波,不是正弦波,利用傅氏级数展开式展开周期的矩形波形,可以看到除了工频正弦波(50hz基波)外,还叠加了一系列高次波形——谐波。应该说电动机采用变频器进行调速,可以高水平完成调速外,也可以节省大量电能(近30%),但如前面分析,变频调速过程中要产生高次谐波,即形成高次谐波污染,造成厂区的电视、音响系统不能正常工作,还要干扰二次仪表——压力、流量、可编程控制器及智能控制器正常工作,谐波还会使变压器、电动机、电容器及电抗器产生过热。增加换流装置的相数或脉波数,是减少换流装置产生谐波电流的十分有效的措施。

3.4 超铭牌容量运行问题

确定变压器铭牌容量需要综合考虑其它一些因素。例如环境温度的影响,降低温度可以提高变压器的输出功率和减少变压器的损耗,又如变压器台数的合理选择和技术经济比较等等都是影响变压器容量选择的考虑因素。

至于变压器的过载能力是和起始负荷率、环境温度和通风散热条件等相关的因素有关,且只能是应急性质和短时间的。过负载时首先要求不致损坏变压器的绝缘和降低使用效率为原则,一年四季中高峰用电是可能会超负荷而低谷时又会出现轻载运行。这"超"、"轻"负载两者之间的量和时间基本相等,同时会起到互补的作用,但最好不要超负荷。

  过负荷百分数(n)计算公式:

  n=(i-le)/ie×100

  式中:

  i —变压器实际负荷电流;

  ie—变压器额定电流。

当然对于设置有强迫风冷的变压器其应急过载能力可达40-50,而且过持断续时间也可适当延长(但绝不允许过载情况下长期运行),这可由产品的技术条件来确定。

综合上述各种因素对选择变压器容量的影响,从节能、经济、实用、安全可靠出发,一般选取变压器负荷率在0.65-0.8为宜。

3.5 抑制环流问题

对于18脉波及以上的整流变换,整流变压器绕组采用曲折接线(z接线)实现,各整流单元并联(或串联),共同向负载供电。只要满足m组6脉动整流交流侧的电压u(n)(n=1,2,……,m)依次移相α=60°/m,即可得到p=6m脉波的多相整流。而对于18脉波移相,理论上不含有17、19次及以下谐波,因此很好地减少了低次谐波环流的影响;通常只要保证变压器两侧角星总匝数比等于1.732,便能很好地避免环流问题的出现,而这只是理论上的计算,实际中匝数不可能为小数,所以只能在设计时合理选择分配,使得比值尽量趋近。

3.6 阻抗计算的要求

变压器二次电抗数值愈小,负载分配相差就愈大。理论计算表明:增大整流变压器二次电抗,可以部分减小负载电流分配不均的问题。由于整流变压器二次侧电抗可调整的只有变压器内部引线电抗和二次侧母线电抗,可调节范围很有限。而且,整流机组的负载率是随生产工艺和备用机组的投切经常变化的。所以,这样的设想具有很大的局限性,实际上是做不到的。将整流变压器绕组按分裂式变压器结构(如轴向分裂)设计,增大绕组间阻抗,也有利于改善负载电流分配不均问题。但针对晶闸管整流器而言,可能存在着其它不利于晶闸管安全运行的因素。

采用晶闸管整流器虽然可以对两套二次侧绕组的

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top