在IC的加工生产和封装过程中静电对其的影响
在当前的水处理中,各项杂质处理的难易程度依次是TOC、SiO2、DO、电阻率,其中电阻率达到18MΩ·cm(25℃)是当前比较容易达到的。由于TOC含量高会使栅氧化膜尤其是薄栅氧化膜中缺陷密度增大,所以栅愈薄要求TOC愈低,况且现在IC技术的发展趋势中,芯片上栅膜越来越薄,故降低TOC是当前和今后的最大难点,因而已成为当今超纯水水质的象征和重心。据有关资料介绍,在美国芯片厂中,50%以上的成品率损失起因于化学杂质和微粒污染;在日本工厂中由于微粒污染引起器件电气特性的不良比例,已由2μm的70%上升到0.8μm超大规模IC的90%以上,可见IC线条宽度越细,其危害越突出。相应的在IC封装过程中超纯水的重要性就显而易见了。
在半导体制造工艺中,大约有80%以上的工艺直接或间接与超纯水,并且大约有一半以上工序,硅片与水接触后,紧接着就进人高温过程,若此时水中含有杂质就会进入硅片而导致IC器件性能下降、成品率降低。确切一点说,向生产线提供稳定优质的超纯水将涉及到企业的成本问题。
2.3纯气的影响
在IC的加工与制造封装中,高纯的气体可作为保护气、置换气、运载气、反应气等,为保证芯片加工与封装的成品率和可靠性,其中一个重要的环节,就是严格控制加工过程中所用气体的纯度。所谓"高纯"或"超纯"也不是无休止的要求纯而又纯,而是指把危害IC性能、成品率和可靠性的有害杂质及尘粒必须减少到一定值以下。
例如在IC封装过程中,把待减薄的晶圆,划后待粘片的晶圆,粘片固化后待压焊的引线框架(LF)与芯粒放在高纯的氮气储藏柜中可有效地防止污染和氧化;把高纯的C02气体混合人高纯水中,可产生一定量的H+,这样的混合水具有一定的消除静电吸附作用,代划片工序使用可有效地去除划痕内和芯粒表面的硅粉杂质,以此来减少封装过程中的芯粒浪费。
2.4 温、湿度的影响
温、湿度在IC的生产中扮演着相当重要的角色,几乎每个工序都与它们有密不可分的关系。GB50073-2001《洁净厂房设计规范》中明确强调了对洁净室温、湿度的要求要按生产工艺要求来确定,并按冬、夏季分别规定。
根据国家要求标准,也结合我厂IC塑封生产线的实际情况,特对相关工序确定了温、湿度控制的范围,运行数年来效果不错。
但是,由于空调系统发生故障,在2001年12月18日9:30~9:40期间,粘片工序工作区域发生了一起湿度严重超标事故。当时相对湿度高达86.7%RH,而在正常情况下相对湿度为45~55%RH。
当时湿度异常时粘片现场状况描述如下:
所有现场桌椅板凳、玻璃、设备、晶圆、芯片以及人身上的防静电服表面都有严重的水汽,玻璃上的水汽致使室内人看不清过道,用手触摸桌椅设备表面,都有很明显的手指水迹印痕。更为严重的是在粘片工序现场存放的芯片有许多,其中SOPl6L产品7088就在其列。所有这些产品中还包括其它系列产品,都象经过了一次"蒸汽浴"一样。
针对这批7088成品率由稳到不稳,再到严重下降这一现象,我们对粘片、压焊、塑封等工序在此批次产品加工期间的各种工艺参数,原材料等使用情况进行了详细汇总,没有发现异常情况,排除了工艺等方面的原因。
事后进一步对废品率极高的18#、21#、25#、340、55#卡中不合格晶进行了超声波扫描,发现均有不同程度的离层,经解剖发现:从离层处发生裂痕、金丝断裂、部分芯片出现裂纹。最后得出结论如下:
(1)造成成品率下降的原因主要是封装离层处产生裂痕,导致芯片裂纹或金丝断裂。
(2)产生离层的原因是由于芯片表面水汽包封在塑封体内产生。
由此可见,温、湿度对IC封装生产中的重大影响。
2.5其它因素的影响
诸如压差因素、微振因素、噪声因素等对IC封装加工中都有一定的影响。鉴于篇幅所限,这里就不再逐一赘述。
1 引言
现代发达国家经济发展的重要支柱之一--集成电路(以下称IC)产业发展十分迅速。自从1958年世界上第一块IC问世以来,特别是近20年来,几乎每隔2-3年就有一代产品问世,至目前,产品以由初期的小规模IC发展到当今的超大规模IC。IC设计、IC制造、IC封装和IC测试已成为微电子产业中相互独立又互相关联的四大产业。微电子已成为当今世界各项尖端技术和新兴产业发展的前导和基矗有了微电子技术的超前发展,便能够更有效地推动其它前沿技术的进步。随着IC的集成度和复杂性越来越高,污染控制、环境保护和静电防护技术就越盲膨响或制约微电子技术的发展。同时,随着我国国民经济的持续稳定增长和生产技术的不断创新发展,生产工艺
- 网络环境下的蓄电池智能监测系统设计(01-06)
- 生产环境对电源模块可靠性的影响(01-26)
- linux操作系统交叉编译环境的建立方法(09-18)
- 提高用于高温环境和电负载的薄膜电阻的性能(10-01)
- 基于VC环境的变频器联网控制(03-11)
- 电流模拟实验系统的设计(03-29)