微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 使用隔离式半桥驱动器的H电桥驱动电路

使用隔离式半桥驱动器的H电桥驱动电路

时间:11-17 来源:ADI 点击:

自举电容(C1、C2)

每次低端驱动器接通时,自举电容就会充电,但它仅在高端开关接通时才放电。因此,选择自举电容值时需要考虑的第一个参数,就是高端开关接通并且电容用作栅极驱动器ADuM7234的高端直流电源时的最大容许压降。当高端开关接通时,ADuM7234的直流电源电流典型值为22 mA。假设高端开关的导通时间为10 ms(50 Hz、50%占空比),使用公式C = I × ΔT/ΔV,如果容许的压降ΔV = 1 V,I = 22 mA,ΔT = 10 ms,则电容应大于220 μF。本设计选择330 μF的容值。电路断电后,电阻R5将自举电容放电;当电路切换时,R5不起作用。

自举限流电阻(R1、R2)

对自举电容充电时,串联电阻R1起到限流作用。如果R1过高,来自ADuM7234高端驱动电源的直流静态电流会在R1上引起过大的压降,ADuM7234可能会欠压闭锁。ADuM7234的最大直流电源电流IMAX = 30 mA。如果该电流引起的R1压降以VDROP = 1 V为限,则R1应小于VDROP/IMAX ,或33 Ω。因此,本设计选择10 Ω的电阻作为自举电阻。

自举启动电阻(R3、R4)

电阻R3启动自举电路。上电之后,直流电压不会立即建立起来,MOSFET处于断开状态。在这些条件下,C1通过路径R1、R3、D1、VS充电,其过程如下式所述:

其中, vC(t)为电容电压,VS(为电源电压,VD(为二极管压降,τ为时间常数,τ = (R1 + R3) C1。电路值如下:R1 = 10 ΩvC1 = 330 μF, VD = 0.5 V,VS = 12 V。由以上方程式可知,当R3 = 470 Ω时,电容充电到最终值的67%需要一个时间常数的时间(158 ms)。电阻值越大,则电容的充电时间越长。然而,当高端MOSFET Q1接通时,电阻R1上将有12 V电压,因此,如果电阻值过低,它可能会消耗相当大的功率。对于R3 = 470 Ω,12 V时该电阻的功耗为306 mW。

自举电容的过压保护(Z1、Z2)

如上所述,对于感性负载,当高端MOSFET断开时,电流会流经续流二极管。由于电感和寄生电容之间的谐振,自举电容的充电能量可能高于ADuM7234消耗的能量,电容上的电压可能上升到过压状态。13 V齐纳二极管对电容上的电压进行箝位,从而避免过压状况。

栅极驱动电阻(R7、R8、R9、R10)

栅极电阻(R7、R8、R9、R10)根据所需的开关时间tSW.选择。开关时间是指将 Cgd 、 Cgs 和开关MOSFET充电到要求的电荷Qgd 和 Qgs所需的时间。

图2. ADuM7234的电源轨滤波和欠压锁闭保护

  描述栅极驱动电流Ig:</的方程式如下:< p>

其中, VDD 为电源电压,RDRV为栅极驱动器ADuM7234的等效电阻, Vgs(th)为阈值电压,Rg为外部栅极驱动电阻,Qgd 和 Qgs 为要求的MOSFET电荷, tSW为要求的开关时间。

ADuM7234栅极驱动器的等效电阻通过下式计算:
    
根据ADuM7234数据手册,对于 VDDA = 15 V 且输出短路脉冲电流 IOA(SC) = 4 A,通过方程式3计算可知,RDRV 约为4 Ω。

根据FDP5800 MOSFET数据手册,Qgd = 18 nC, Qgs = 23 nC, Vgs(th) = 1 V。

如果要求的开关时间 tSW为100 ns,则通过方程式2求解Rg可知,Rg 约为 22 Ω。实际设计选择15 Ω电阻以提供一定的裕量。

电源轨滤波和欠压保护

由于峰值负载电流很高,因此必须对直流电源电压(VDD)进行适当的滤波,以防ADuM7234进入欠压闭锁状态,同时防止电源可能受到损害。所选的滤波器由4个并联4700 μF、25 V电容与一个22 μH功率电感串联而成,如图2所示。100 kHz时,电容的额定最大均方根纹波电流为3.68 A。由于4个电容并联,因此允许的最大均方根纹波为14.72 A。所以,IPEAK = 2√2 × IRMS = 41.63 A。

经过滤波的+12 V电压还驱动图1所示的电路。

当电源电压低于10 V时,图2所示电路便会禁用ADuM7234的输入端,从而防止ADuM7234欠压闭锁。将一个逻辑高电平信号施加于ADuM7234的DISABLE引脚可禁用该电路。

开漏式低电平有效比较器 ADCMP350 用于监视直流电源电压。电阻分压器(R12、R13)的比值经过适当选择,当电源电压为10.5 V时,分压器输出为0.6 V,与比较器的片内基准电压0.6 V相等。当电源电压降至10.5 V以下时,比较器的输出变为高电平。由于ADuM7234的输入端与输出端之间存在电流隔离,因此输出端的DISABLE信号必须通过隔离器传输到输入端。 ADuM3100是基于iCoupler 技术的数字隔离器。ADuM3100兼容3.3 V和5 V工作电压。经过滤波的12 V电源电压驱动线性调节器ADP1720 ,为ADuM3100的右侧隔离端提供5 V (+5V_1)电压,如图2所示。

负载和PWM信号

如果使用电感作为负载,当施加恒定电压时,流经电感的电流将线性变化。电压U为12 V,如果忽略导通电阻引起的MOSFET压降,则以下方程式成立:

  对于50 kHz、8%占空比PWM信号,使用4 μH Coilcraft功率电感(SER2014-402)作为负载时,负载电流波形如图3所示。利用电流探头测量电感电流。

对于12 V电源电压和4 μH电感,方程式4预测斜率为3 A/μs。而实测斜率为2.8 A/μs,斜率下降的原因在于MOSFET导通电阻引起的压降。

注意,电流断开后的短时间内,波形上会出现少量响铃振荡,其原因是电感负载与续流二极管和MOSFET的寄生电容之间发生谐振。

必须注意,电路中的电感电流不得超过其额定最大值。如果超过,电感就会饱和,电流将迅速提高,可能损坏电路和电源。本电路中使用的Coilcraft SER2014-402电感负载的额定饱和电流为25 A。

图3. 4 μH负载下负载电流与PWM脉冲的关系

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top