智能电池供电的电源系统设计
LTC1760是为使用双路智能电池应用而设计的高度集成的3级电池充电器和选择器,采用降压开关拓扑,具有符合智能电池标准定义的多种功能和输入限流、安全限制等新增功能。LTC1760的SMBus接口可以跟踪电池的内部电压和电流,同时允许一个外接的SMBus主机监控任意一个电池的状态。通过SMBus接口,主机系统可获知电池供电系统的工作状态,例如电池组的电压、电流、充电电压、充电电流、电池告警状态,以及使用的外接电源还是电池组供电等。LTC1760的充电精度由电池组内部的电压、电流测量值决定,典型的测量精度误差为±0.2%。双电池系统通常采用顺序放电方式放电,即先消耗电池组1的电量,再消耗电池组2的电量,通过这种方式来简单地延长总的电池放电时间。而LTC1760采用专有的供电路径架构支持两路电池同时充电或放电。典型状态下,可使电池供电时间延长10%,而充电时间可减少50%。LTC 1760能够在10μs内在输入电源之间切换,防止电池或外部电源迁移时供电中断。电池的热敏电阻可以用于监控电池的温度和电池的连接状态。
智能电池系统管理电路在设计中需确定5个关键参数:
①输入限流电阻RCL。用于限制系统充电电流和负载电流之和,不超过外接电源适配器的额定电流。系统中,适配器选择24 V、150 W,额定电流为6 A,RCL的电流ILIM=5.7 A,RCL选择0.018 Ω/1 W的电阻。
②限流电阻RILIM。设定充电器可以供给电池的最大允许电流,任何超过这个限度的值都会被限定值所取代。
③匹配充电电流检测电阻RSENSE。作用是让充电器的满标度电流与设置满标度限流值同步。在本系统中充电最大电流设定为4 A,RILIM设定为开路,RSENSE使用0.025 Ω/1 W的电阻。
④限压电阻RVLIM。用于设定充电器可输出的5个限压值中的一个,本系统中充电限制电压设定为16.8 V,因此,RVLIM选择33 kΩ的电阻。
⑤短路保护电阻RSC。用于设定电路短路保护启动电流。系统中3个电源通路都由2个背对背的P沟道场效应管与短路检测电阻RSC串联。系统中选择RSC=0.012 Ω/1 W。
经过智能电池系统管理电路电源路径选择后,+12 V电源产生电路的输入端电压:外接直流电供电时为+24 V。
2.3 +12 V产生电路
电池组供电时,电压可从满电时的+16.8 V逐渐下降到+11.6 V。因此,输入电压的变化范围为+11.6~+24 V。如果使用单一的降压变换电路产生+12 V电路,那么在电池供电过程中,当电池即将放空、电池电压接近或低于12 V时,电路将不能正常工作。此时,电池仍有一定的电量未放出,不能充分利用电池的供电能力。若采用独立的降压一升压或者升压一降压电路进行组合,则在输入电压高于+12 V的大部分工作时间内,电源转换的效率较低,而且电路复杂。本设计中采用SEPIC(Single-Ended Primary Inductance Converter,单端主电感变换器)电路,用LTC1871作为SEPIC控制器。这样,无论在外接电源及电池组电压大于12 V时,还是在电池供电后期,均能产生+12 V供电电压。
SEPIC电路拓扑和电流在开关闭合和断开情况下的流向示意分别如图4(a)~(c)所示。L1和主开关SW构成了一个升压转换器,L2和二极管D1构成升压一降压型转换器。取L1=L2,并将L1和L2绕在同一核心上,可以降低输入纹波、尺寸和成本。在系统中选择L1、L2在同一核心上,并且两者具有相等的电感。
+12 V电源产生电路如图5所示。输入电压为+10~+24 V,最大负载电流为4 A,输出电压为+12 V。电路启动由负载反馈的12 VON信号控制。10μF/25 V×2指2个10μF/25 V的电容并联,68 μF/20 V×4指4个68μF/20 V的电容并联。
2.4 +5 V后备电源产生电路
+5 V后备电源产生电路如图6所示。从+24 V、智能电池组1和智能电池组2获得电源输入,通过降压稳压器LT1912获得+5 V、2 A输出。LT1912输入范围为3.6~36 V,开关频率可在200~500 kHz范围内设置,输出电压0.79~20 V可调,最大输出电流为2 A。在每个输入端串接一个低正向压降的二极管,防止输入电源之间形成回路。
- DPA-Switch为应对PoE受电设备设计挑战提供有效解决方案(11-06)
- 在射击探测器中增加口径确定功能的简单电路(11-13)
- 用LatticeXP FPGA 桥接吉比特媒体独立接口(01-18)
- 单片机与串行AD转换器TLC0834的接口设计(01-22)
- 8位高速A/D转换器TLC5510的应用(02-16)
- 改善平板显示器的音频性能(02-13)