微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 增强视景系统设计与实现

增强视景系统设计与实现

时间:02-18 来源:现代电子技术 点击:

1.4 CPLD逻辑部分
    CPLD逻辑在系统中的主要功能是完成系统的辅助控制功能,如拓展外部键盘、FLASH分页操作及I/O拓展等,CPLD顶层逻辑如图2所示。这里主要介绍利用CPLD逻辑来拓展外部键盘及FLASH分页的操作。


    为了实现增强视景中模式的切换功能,需要外扩一个3×3的键盘阵列。在系统实现中,利用CPLD逻辑完成键盘信号KEY1:KEY9的相与操作,将相与之后的信号接DM642的外部中断5。当有键按下时,DSP_INT5将产生一个下降沿,从而触发DSP产生中断,在中断服务程序中,进行键值扫描,判断是哪个按键按下,然后设置相应的标志位,作为模式选择信号。
    CPLD除了完成按键拓展外,还有一个很重要的功能就是完成FLASH的分页操作。系统中,将CE1子空间配置成8位异步静态存储器接口连接FLASH,由于DM642的只有20根(EA3:EA20)外部总线,所以CE1的最大可寻址空间为1 M×8 b,CE1只将前一半的寻址空间分配给FLASH,后一半空间作为控制逻辑寄存器使用,所以FLASH映射空间为Ox90000000~0x90007FFFF,共512K×8 b。
    为了完成对外部4M×8 b FLASH空间的访问,需要利用CPLD逻辑完成对FLASH的分页管理,共将FLASH分成8页。
    系统中,利用CPLD逻辑分配了一个页地址控制寄存器,地址为0x90080060,通过改变页地址寄存器的值来改变页选通信号PA19:PA21的值,从而完成FLASH的分页操作。

2 系统软件设计
   
基M642的视景增强系统软件的实现是在CCS2.2编译环境下进行的。采用了DSP/BIOS嵌入式操作系统,利用硬件中断和任务调度实现视频数据的采集、任务的显示及各种显示模式的相互切换。在程序设计中利用了RF5及同步通信等相关技术。DSP/BIOS程序模型如图3所示。


2.1 软件实现总流程
    DSP/BIOS是一种抢先型、可裁剪的实时操作系统,由3部分组成:DSP/BIOS实时内核与API、DSP/BIOS分析工具、DSP/BIOS配置工具。DSP/BIOS操作系统支持多线程管理和调度,共有4种线程:硬件中断、软件中断、任务、空闲循环;支持任务间同步通信,提供邮箱、信号灯、队列等方式。在DSP/BIOS操作系统下,可方便地实现对片上外设及外部存储芯片的配置和管理,利用它开发的程序具有更好的移植性能。
    系统软件的实现基于DSP/BIOS微操作系统,利用图3所示基于任务的应用程序实现模型进行编写。系统的总流程如图4所示。


2.2 系统设备驱动的设计与实现
   
在系统中,综合运用了DSP/BIOS,DDK,RF5等技术编写设备驱动程序,使用标准的类/微驱动程序模型来开发视频驱动程序,使硬件驱动程序与上层应用程序开发剥离开,提高程序的可移植和复用性能。当开发好硬件驱动程序后,上层的应用程序开发人员只需知道设备驱动程序提供的接口,而不需要了解底层硬件的工作原理及如何配置。
    在系统中,当配置好硬件的底层驱动后,在图像采集时,底层驱动提供给上层应用程序的接口就是存放图像传感器数据的帧缓冲地址;而在图像显示时,应用程序只提供要显示图像的帧缓冲地址。这些功能的实现都是通过帧视频驱动程序(FVID)来实现的,它不仅完成对视频采集与显示设备的配置,还完成视频帧缓冲区的管理工作。
    FVID函数是对GIO类函数的简单封装,是为GIO类设备提供的一组宏。FVID/GIO类驱动程序不仅可以完成对片上视频口外设的配置,还能与外部设备接口(EDC)配合实现对外部编解码芯片的配置。在程序中,除了完成对3个视频口的配置外,还需对外部编解码芯片的配置,现以视频口0配置成采集通道为例来说明具体的操作过程:
    (1)先在DSP/BIOS操作系统下的静态配置工具中创建一个设备驱动,取名为"VPOCAPTURE",在属性页面完成设置操作。
    (2)在采集任务开始前,利用FVID_create()函数完成分配,并初始化FVID通道对象。FVID_create()函数可以配置视频口是采集模式,还是显示模式。在采集和显示时,使用视频口哪个通道来配置这个通道的参数。
    (3)利用FVID_control()函数发送命令给下层的微驱动(Mini-driver),以实现对外部编解码芯片的配置。
    (4)在采集和显示任务中,调用FVID帧缓冲管理函数,以完成视频帧缓冲的管理。


2.3 飞行仪表画面的绘制与叠加
   
增强视景系统中除了实时采集的图像外,还有一个很重要的功能就是要能够显示当前飞机的飞行姿态、飞机发动机及航电系统的状态、敌我信息的显示等。而这些信息的显示都是用仪表的形式显示出来的,这些仪表可以透明或者不透明地叠加在实时采集的传感器图像上,从而增强飞行员态势感知的能力。在系统中主要设计了以下几种飞行仪表:
    PFD(Primary Flight Display)仪表画面是飞机飞行中最重要的飞行仪表,在PFD仪表中应该包含的信息包括航向角、飞行姿态、空速以及高度等。PFD画面以综合的显示方式包含了上面的信息,主飞行画面如图5所示。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top