微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 如何为具体应用恰当的选择MOSFET

如何为具体应用恰当的选择MOSFET

时间:01-05 来源:飞兆 点击:

总而言之,RθJC在电源设计团队的控制范围以外,因为它是由所采用的器件封装技术决定。先进的热性能增强型封装,比如飞兆半导体的Power 56,其RθJC 规格在1 和 2 oC/W之间,FDMS7650 的规格为 1.2 oC/W。设计团队可以通过PCB设计来改变 RθJA 。最终,一个稳健的热设计有助于提高系统可靠性, 延长系统平均无故障时间(MTBF)。

  开关电源中的MOSFET

  现在让我们考虑开关电源应用,以及这种应用如何需要从一个不同的角度来审视数据手册。从定义上而言,这种应用需要MOSFET定期导通和关断。同时,有数十种拓扑可用于开关电源,这里考虑一个简单的例子。DC-DC电源中常用的基本降压转换器依赖两个MOSFET来执行开关功能(图 2),这些开关交替在电感里存储能量,然后把能量释放给负载。目前,设计人员常常选择数百kHz乃至1 MHz以上的频率,因为频率越高,磁性元件可以更小更轻。


    图2:用于开关电源应用的MOSFET对。(DC-DC控制器)

  显然,电源设计相当复杂,而且也没有一个简单的公式可用于MOSFET的评估。但我们不妨考虑一些关键的参数,以及这些参数为什么至关重要。传统上,许多电源设计人员都采用一个综合品质因数(栅极电荷QG ×导通阻抗RDS(ON))来评估MOSFET或对之进行等级划分。

  栅极电荷和导通阻抗之所以重要,是因为二者都对电源的效率有直接的影响。对效率有影响的损耗主要分为两种形式--传导损耗和开关损耗。

  栅极电荷是产生开关损耗的主要原因。栅极电荷单位为纳库仑(nc),是MOSFET栅极充电放电所需的能量。栅极电荷和导通阻抗RDS(ON) 在半导体设计和制造工艺中相互关联,一般来说,器件的栅极电荷值较低,其导通阻抗参数就稍高。

  开关电源中第二重要的MOSFET参数包括输出电容、阈值电压、栅极阻抗和雪崩能量。

  某些特殊的拓扑也会改变不同MOSFET参数的相关品质,例如,可以把传统的同步降压转换器与谐振转换器做比较。谐振转换器只在VDS (漏源电压)或ID (漏极电流)过零时才进行MOSFET开关,从而可把开关损耗降至最低。这些技术被成为软开关或零电压开关(ZVS)或零电流开关(ZCS)技术。由于开关损耗被最小化,RDS(ON) 在这类拓扑中显得更加重要。

  低输出电容(COSS)值对这两类转换器都大有好处。谐振转换器中的谐振电路主要由变压器的漏电感与COSS决定。此外,在两个MOSFET关断的死区时间内,谐振电路必须让COSS完全放电。因此,谐振拓扑很看重较低的COSS。考虑图3所示的飞兆半导体FDMS7650的COSS与VDS的关系图。


  图3:FDMS7650的COSS与VDS的关系图。

  低输出电容也有利于传统的降压转换器(有时又称为硬开关转换器),不过原因不同。因为每个硬开关周期存储在输出电容中的能量会丢失,反之在谐振转换器中能量反复循环。因此,低输出电容对于同步降压调节器的低边开关尤其重要。

  马达控制应用的MOSFET

  马达控制应用是功率MOSFET大有用武之地的另一个应用领域,这时最重要的选择基准可能又与其它大不相同。不同于现代开关电源,马达控制电路不在高频下开关。典型的半桥式控制电路采用2个MOSFET (全桥式则采用4个),但这两个MOSFET的关断时间(死区时间)相等。对于这类应用,反向恢复时间(trr) 非常重要。在控制电感式负载(比如马达绕组)时,控制电路把桥式电路中的MOSFET切换到关断状态,此时桥式电路中的另一个开关经由MOSFET中的体二极管临时反向传导电流。于是,电流重新循环,继续为马达供电。当第一个MOSFET再次导通时,另一个MOSFET二极管中存储的电荷必须被移除,通过第一个MOSFET放电,而这是一种能量的损耗,故trr 越短,这种损耗越小。

  所以,若设计团队需要在电源电路采用MOSFET,在评估过程开始之前,需对手中的应用进行仔细全面的考虑。应根据自己的需求而非制造商吹嘘的特定规格来对各项参数进行优先级划分。

  补充:利用IC和封装设计获得最小的 RDS(ON) 规格

  在MOSFET的选择过程中,评估参数的设计人员一般通过仔细分析相关规格来了解自己到底需要什么。但有时深入了解IC制造商如何提供工作特性是很有必要的。以RDS(ON)为例,你也许通常期望该规格只与器件的设计及半导体制造工艺有关。但实际上,封装设计对导通阻抗RDS(ON) 的最小化有着巨大的影响。

封装对RDS(ON)的作用巨大是因为该参数主要取决于传导损耗,而封装无疑可以影响传导损耗。考虑本文正文提及的飞兆半导体FDMS7650 和1mΩ导通阻抗。该器件能获得较低RDS(ON) 值,大约一半原因可归结于封装设计。其封装采用一种坚固的铜夹技术取代常用的铝或

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top