微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 不想为开关电源噪声买单,你可以这样办

不想为开关电源噪声买单,你可以这样办

时间:02-01 来源:电源联盟 点击:

样可以基本消除电容产生的噪声。

要确定陶瓷电容是否主要噪声源,可以用不同绝缘体的电容来替换.薄膜电容是性价比不错的替代品.但应注意替换品是否能经受得住反复的尖峰电流和电压应力。

另一种具有价格竞争力的选择是用齐纳箝位电路来替代RCD箝位电路。齐纳箝位的价格已与RCD箝位的相当,但占用的空间小得多而效率更高。

三:电路振荡产生的音频噪声

当电源在工作过程中有问歇式振荡产生时,会引起线圈磁芯间歇式振动,当此振荡频率接近绕变压器的固有振荡频率时,易引发共振现象,此时将产生人耳所能听到的音频噪声。

电路振荡产生的原因有很多,下面简单讲解:

1:PCB设计不当

A)功率大电流地线与控制回路地线共用同一走线,由于PCB覆铜线并非理想导体,它总是可以等效成电感或电阻,当功率电流流过了和信号控制回路共用的PCB线,在PCB上产生电压降落,特别是采用多点接地时,由于控制电路各节点分散在不同位置,功率电流引起的电压降对控制电路叠加了扰动,使电路发出噪音,这问题通常采用单点接地可以得到改善。

B)芯片VCC电源走线过长、或离高dt/di大电流走线过近而受到干扰,这问题一般可通过在靠近芯片VCC引脚加个104瓷片去耦电容器得到改善。

C)基准稳压ICTL431的接地线失误、同样的次级的基准稳压IC的接地和初级IC的接地一样有着类似的要求,那就是都不能直接和变压器的冷地热地相连接。如果连在一起的后果就是带载能力下降并且啸叫声和输出功率的大小呈正比。当输出负载较大,接近电源功率极限时,开关变压器可能会进入一种不稳定状态:前一周期开关管占空比过大,导通时间过长,通过高频变压器传输了过多的能量;直流整流的储能电感本周期内能量未充分释放,经PWM判断在下一个周期内没有产生令开关管导通的驱动信号或占空比过小;开关管在之后的整个周期内为截止状态,或者导通时间过短;储能电感经过多于一整个周期的能量释放,输出电压下降,开关管下一个周期内的占空比又会大……如此周而复始,使变压器发生较低频率(有规律的间歇性全截止周期或占空比剧烈变化的频率)的振动,发出人耳可以听到的较低频率的声音。

同时,输出电压波动也会较正常工作增大。当单位时间内间歇性全截止周期数量达到总周期数的一个可观比例时,甚至会令原本工作在超声频段的变压器振动频率降低,进入人耳可闻的频率范围,发出尖锐的高频"哨叫"。此时的开关变压器工作在严重的超载状态,时刻都有烧毁的可能--这就是许多电源烧毁前"惨叫"的由来,相信有些用户曾经有过类似的经历。

空载,或者负载很轻时开关管也有可能出现间歇性的全截止周期,开关变压器同样工作在超载状态,同样非常危险。针对此问题,可通过在输出端预置假负载的方法解决,但在一些"节省"的或大功率电源中仍偶有发生。当不带载或者负载太轻时,变压器在工作时所产生的反电势不能很好的被吸收。这样变压器就会耦合很多杂波信号到你的1.2绕组。这个杂波信号包括了许多不同频谱的交流分量。其中也有许多低频波,当低频波与你变压器的固有振荡频率一致时,那么电路就会形成低频自激。变压器的磁芯不会发出声音。我们知道,人的听觉范围是20--20KHZ。所以我们在设计电路时,一般都加上选频回路。以滤除低频成份。从你的原理图来看,你最好是在反馈回路上加一个带通电路,以防止低频自激.或者是将你的开关电源做成固定频率的即可。

关于PCB走线的另外一些需要注意的地方总结:

号线必须尽可能地短,并且远离MOS管漏极走线以防止噪声耦合,信号地独立布线,尽可能与功率地分离.光耦地,Vcc地,Y电容地分开,反馈脚电容尽可能靠近IC。

将电源和地平行布置。将敏感及高频的走线尽量远离高扰的电源走线。

加宽电源和地的走线来减小电源线和地线之间的阻抗。

最小化由漏极、箝位和变压器构成的环路区域

最小化由次级绕组、输出二极管和输出滤波电容构成的环路区域

增加走线之间的距离来减小电容耦合的串扰。

2:反馈设计不当

比如带宽设置过宽、相位余量不足,解决的方法可以试着把带宽压一压,有些设计为了提高瞬态响应,带宽过宽对高频干扰的印制就会减弱,盲目提高带宽是不可取的。

大功率开关电源短路啸叫

相信大家遇到过这种情况,开关电源在满载后突然将电源短路测试,有时候会听到电源有啸叫的情况;或者是在设置电流保护时,当电流调试到某一段位,会有啸叫,其啸叫的声音抑扬顿挫,甚是烦人,究其原因主要为以下:

当输出负载较大,接近电源功率极限时,开关变压器可

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top