微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 基于ATmege128的多功能照明开关自动控制系统

基于ATmege128的多功能照明开关自动控制系统

时间:10-24 来源:3721RD 点击:

故障时,计数器会发生错误,此时就用键盘重新输入值更正一下,同时键盘还可以用于调节时间,还有之前介绍的功能键也是其中的一部分。

图1 系统架构

2.2 性能要求

①光感应灵敏,响应速度快(2us左右),工作温度范围宽(-25℃~+70℃)。

②计数准确。

③测温精确度高,精度为±0.5°C;适应电压范围更宽,电压范围:3.0~5.5V。

④使用PT2262射频无线通信芯片,在室内可用通信距离为几十米,无线遥控距离遍及了一般的教室(或工厂)空间。

本系统有两个要求相对要严谨一点的模块。首先是计数模块,因为我们使用的是对射式计数方式也就是一旦遮住光线,红外感应器就会发出一个计数脉冲。但是,当人员相对比较密集的时候,也就是说当门足够宽时,出现两个人并排或者是错开但仍连续遮掩光线时,这时计数器只记一个数,这样就会出现错误。所以,我们所设计的装置只适应于那种门不会太宽以至于不会出现多人连续遮掩光线,使计数值不准的场合。就我们对我们学校的观察以及测量发现,就一般的学校教室几乎不会出现上述情况,所以本装置安装在教室内计数上几乎不会产生错误。

其次是无线遥控模块(该模块主要用于家庭照明系统或工厂中),该模块传输距离有限,一般在几十米,但当用户在较远距离遥控时可能会出现失灵的情况。

三、方案设计

3.1 系统功能实现原理

本系统主要包含以下几个模块: ①计数模块

②光感应模块

③显示模块

④测温模块

⑤键盘模块

⑥无线遥控模块

1、计数模块

计数模块我们采用红外线感应计数器,该种计数器大体分为两种,其中一种是对射式,另一种是反射式。对射式是利用一个发射头一个接收头,中间如果有物体通过就遮挡一下光线,输出一个脉冲给计数器,计数一次;反射式是发射头和接收头做在一块成为一个红外探头,当红外探头前有物体出现就把发射头的红外线反射给接收头,探头输出一个计数脉冲给计数器,计数一次。由于对我们这个系统的应用场合对射式要比反射式计数方面要准确些,所以采用对射式。我们把红外线感应计数器的脉冲输出端直接连接在单片机的I/O口上进行计数处理,计数结果同时要在液晶屏显示器上显示一下。

红外感应器与单片机连接示意图

2.光感应模块

光感应模块我们首选的是欧恩光电技术研究所 2006 年研发的专利项目--ON9658光感应传感器。该产品采用的是CMOS工艺内置了稳压、 OP 放大、红外差分等近 10000 门电路,还有暗电流小,低照度灵敏等等优点,在实际应用中,只需加一个下拉电阻即可。此产品适合电视机、LCD背光、数码产品、仪器仪表、工业设备等诸多领域的节能控制、自动感光、自适应控制等,同时可定位为环保产品,替代传统光敏电阻、光敏二极管、光敏三极管,符合本次大赛环保的理念。

实现原理:当光照射到光敏三极管上,光敏三极管的阻值急剧减小,利用光敏三极管On9658作为传感器串联一个7.5K的电阻,通过光敏三极管电压的变化反映因光源的照射强度在光敏三极管上的变化。把检测的电压信号通过电压跟随器电路输入Atmega128型单片机。该电路结构简单,灵敏度高且检测电压信号稳定,效果明显。

采样信号运放电路,增强信号的强度,通过电压跟随器可以增加信号电压的稳定性,后级接电压跟随器增强了电路带负载能力。

3.显示模块

设计中LCD主要作用:本次设计LCD主要作用于显示当前室内人数以及对系统操作时的操作菜单,通过显示器实现方便直观人机对话界面。

LCD显示原理:本设计采用以ST7920为驱动芯片的LCD12864字符液晶显示器。ST7920通过RS、R/W 和E的时序配合,通过DB0-DB7八位数据端口对其内部数据寄存器DR和指令寄存器IR的读写操作,通过对数据寄存器DR 的访问, 可以存取DDRAM、CGRAM、CGROM 和IRAM 的值。将要显示的字型码写入到DDRAM上, ST7920将自动地按照编码从CGROM 中将要显示的字型显示到屏幕上。

LCD初始化流程:

..

LCD显示内容:

时间设置 人数更改设置

4.测温模块

测温模块我们首选的是DS18B20,因为该模块我们之前使用过,不仅使用方便,而且在性能上也有不错的效果。 据我们了解在传统的模拟信号远距离温度测量系统中,我们需要很好的解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。另外一般监控现场的电磁环境都非常恶劣,各种干扰信号较强,模拟温度信号容易受到干扰而产生测量误差,影响测量精度。因此,在温度测量系统中,采用抗干扰能力强的新型数字温度传感器是解决这些

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top