微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 多模式开关电源控制芯片的低功耗设计与实现

多模式开关电源控制芯片的低功耗设计与实现

时间:01-16 来源:互联网 点击:

,有利于降低功耗。因此,本设计最终采用了UVL02方案。此外,为最大限度减小功耗,设计中将带隙基准电压、数字电源和欠压锁定电路集成在一起。具体电路图见图4。

图4 欠压锁定和数字电源的具体电路图

图中利用带隙基准电压加上四个二极管连接的三极管产生一个大于4 V 的电压,然后经过M0S管产生一个大约2.65 V左右的电压。这个电压在基准电压建立后就产生了,主要用于为欠压锁定电路的数字部分供电,并且担任了为整个系统的数字电路供电的任务。

1.3 5 V基准电压源(REG)

图5为5 V稳定电压源(REG)的电路原理。其中P1、P2、P3、P4组成共源共栅结构,可以提高电流镜的镜像精度,同时提高电源抑制比。Q3、Q4、R 1、R2组成一个带隙基准电压,这样可以减小额外的电流支路,降低功耗。Q1、Q2组成达林顿结构,增加输出能力。P5、P6增加匹配,减小沟道长度调制效应。Q1、Q2、R3、R4、R5、R6、Q4、P5、P6组成一个负反馈环路,将REG电压稳定在5 V。图中C具有两种作用:1、记忆直流工作点;2、补偿环路电容。

稳压机理如下:当负载增加时,REG电压下降,则Q4基极下降,集电极升高,经过P5、P6,使得Q1、Q2基极升高,REG 电压升高;反之亦然。

REG电压是片上多数模块的供电电压,驱动能力设计为4mA。

图5 5 V 稳定电压源

1.4 4.3 V稳定电压源

4.3 V 的稳定电压源(VDD-AD)用来在轻载时为系统供电,始终保持工作,在BURST模式下由它为模拟模块供电。

图6 4.3 V 的稳定电压源

是带隙基准电压,通过一个运放、一个达林顿结构的晶体管和一个电阻分压网络组成负反馈环路来产生4.3 V 的稳定电压。其稳压机理如下:当负载增大时,VDD-AD电压下降,此时A点电压下降,使运放的输出上升,则Q1、Q2基极升高,REG电压重新升高,获得稳定;反之亦然。

VDD-AD是检测模块的供电电压,设计驱动能力为2 mA.芯片负载减小时,关断REG,减小了芯片的静态功耗,这样既能保证芯片的驱动能力,又同时降低了芯片的静态功耗。

图7 REF-OK 电路的设计

1.5 REF_OK模块

REF_0K模块用以标志电源系统是否建立好,以控制决定供电单元是否正常开始工作。其中两个比较参考电平REFOK1、REF0K2的关系始终保持为REFOK1《REF0K2.电路的工作原理如表3,形成的滞回窗口不仅保证了REG的精度,而且提高了整个供电单元的抗干扰性能。

表3 REF_OK 的基本功能表

1.6 模式控制逻辑

模式控制逻辑用以保证在进行模式选择时,电源系统正常工作。当FB电压底于0.5 V时,该控制逻辑通过内部电流滞回比较器自动选择进入待机模式。RUN信号(其为高电位有效)用来关断绿色多模式反激变换器中的其它控制模块,以实现低待机功耗。

图8 模式控制逻辑

2.版图设计及测试结果

2.1 版图设计

图9给出了制得的多模式开关电源控制芯片的显微照片,其中用线框标出的部分就是所设计的供电模块,包括:欠压锁定电路,数字电源,模拟电压源(5 V稳定电压源,4.3 V稳定电压源),REF_OK等子模块。两个模拟电压源因功率较大,可视为热源,将其统一放置在版图的左边,而PTAT、带隙基准等敏感模块则尽量远离热源,放置在版图的右边,欠压锁定电路也放置在版图的右上角。

图9 芯片的显微照片

2.2 Regulator的测试

5 V 电压的PSR测试波形如图10所示。由此图可见,其PSR可以达到-60 dB.该供电模块在工作频率为40~130 kHz的绿色多模式反激式控制器中的应用表明,它对来自电源的干扰具有较好的抑制能力。

图10 5 V电源的PSR

2.3 供电系统的测试

UVLO的启动电流测量值仅为17.8 A,实现了系统的低启动电流。系统上电和掉电的测试结果如图11和图12所示。可见系统在VDD的设置门限内工作良好,REF-OK可以正确指示各个供电模块正常工作。掉电过程正好相反。

图11 供电模块的上电和掉电过程(1)

图12 供电模块的上电和掉电过程(2)

2.4 模式控制和效率测试

系统的多模式控制测试结果见图13。中载或重载下系统采用PWM 模式工作,许多单元的供电电源为REG=5 V.极轻载条件下则关断5 V的供电电源,减小系统的待机功耗,同时也有利于减小EMI和噪声。其过程如下:当FB电压低于一个阈值时,待机模式选择,则SHUTDOWN信号变高,关断5 V 电压源REG模块,同时VDD-AD继续给芯片供电,保证在轻载时芯片的检测能够连续实现。

图13 供电单元多模式下的节能过程

图14给出了集成了该低功耗电源系统的绿色多模式反激式控制器的效率图(工作频率为40~130kHz),并与传统的反激变换器效率进行了比较。由图可知,采用多模式反激式控制降低了芯片的轻载功耗,提高了效率。

图14 反激变换器效率比较

3 结 论

提出了一种开关电源控制

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top