基于锂离子的电池和充电器设计研究
图1:典型的锂离子电池充电曲线
定电压充电的输出稳压精确度对于电池容量最大化和延长电池使用寿命都很重要。当电池稳压低于4.2V,可能导致电池充电不足,虽不至于影响寿命,却使得电池蓄电量减少。例如充电不足程度只要达到总电压的 1%,就会让电池蓄电量减少8%。另一方面,电池稳压太高,则导致电池过度充电而缩短使用寿命,甚至造成使用者危险。为了确保锂离子电池的充电安全,开始充电时的环境温度,必须在0℃~45℃之间。在更低温度下进行充电会形成更多金属锂,会导致电池阻抗增加与电池劣化。在高温环境下进行充电,则会增加锂离子与电解液的反应而加速电池劣化。
一般而言,建议长时间不使用时,应将电池充至70 - 80%进行存放。这也是为防止长时间的自然放电后,锂离子电池电压低于2.0伏特,导致锂离子电池失效而不能使用。经常把锂离子电池电量耗尽的使用方式,比经常充放电的使用方式,其寿命至少缩短一半以上。
锂离子充电器设计范例
为满足低耗电可携式产品对于更精确、更安全的充电器应用需求,许多IC制造商发展出低成本线性充电器。图2是以通嘉科技的LD6275充电IC为设计范例,构成仅需少数外部零件的独立式线性充电器电路,其具备1.5A的最大充电电流。
图2:LD6275应用电路图
LD6275是一个高整合度的锂离子电池线性充电器IC,具备主动电源路径管理,在负载端电流进行加载/卸载的情况下,实时调整电池充电电流,有效监控管理输入电流(即USB埠的输出电流),符合USB – IF所规范的浪涌电流限制和软激活功能的要求。此外,IC内整合有温度检测功能,如果IC温度超过设定值。会自动降低充电电流以保护芯片避免损坏。
LD6275将电源适配器/USB埠的5V直流电源进行降压稳流,对锂离子电池进行充电,为防止电源适配器的过电流超载,可以外部电阻 RCISET设定最大充电电流限制。同时支持计算机USB端口充电模式,并依据外部脚位EN1与EN2进行设定,各模式请见表1。透过为USB 500mA与USB 100mA操作模式设定,可以保护PC端USB埠避免过载。
表1:充电模式设定
LD6275 具有适应性电源路径管理(Adaptable Power Path Management, APPM)功能,其为以供给系统端用电为主,对电池充电为辅,如图3所示;当系统用电超过输入电源的供给限制时,其电池亦能主动开启放电功能同时对系统端供给其所需之电能需求,如图4所示。
图3. APPM
图4. APPM
LD6275开放两段的电池设定电压与充电电流的调整,可根据其需求动态调整,如为符合日本JEITA的规范要求根据电池之温度而调整充电器之设定,如下图5表示。
图5:TVSET, TISET调整
由于LD6275本身耗电极小,仅1~2mA,几乎可以忽略,因此IC本身发热功率Pd可以由下列公式计算:
Vin为输入电源电压,工作范围4.1V~6V.VBAT是电池电压,可以由0~4.2V,ICHG为设定充电电流,由外部电阻RCISET设定之。当电池电压低于3V时,会进入预充电模式,IC内部预设以ICHG的10%电流进行充电。
假设使用5.5V电源供应器对单颗1200mAh锂离子电池进行充电,在0.7℃快速充电电流时,且电池电压为3V的条件下,可以预估IC运作的最大耗电量为,1.762W的耗电最大值,此一功耗会使得热阻抗60℃/W的3×3毫米QFN封装温度温升127℃,即便环境温度0℃时,也已经超过所允许的125℃硅芯片操作温度最大值。若设定充电电流为0.6A(0.5C),则可降低IC温升为90度,可以操作于35度的环境温度中,因此是较佳的设定电流。
由以上可以得知,快速充电稳流值和电源供应电压的操作范围,对于线性充电器相当重要。线性充电器的根本问题在于操作时芯片温度较高,使得设计时必须在充电电流和散热机构之间做取舍。但往往线性充电器的应用范围是需要轻薄要求的便携式产品,多使用导热性差的塑料外壳,亦不考虑金属散热片,最后产品设计者唯有降低充电电流并延长充电时间,来换取较低的操作温度。基于可携式产品使用者,希望能够在1~2小时中完成充电,因此线性充电器通常比较适合 1500mAh以下的低容量锂离子电池应用。若要应用于高输入/输出电压差或高容量电池的充电应用,此时可以考虑应用同步交换式充电器。
图6所示为锂离子电池充电器的标准充电流程,首先充电IC侦测是否有输出短路或是过载的保护模式,若系统一切正常接着侦测电池初始电压是否达到 3V以上,高于3V者就直接以快充模式进行高电流充电,若电池低于3V者,进入预充电模式,以快充的10%进行充电,唤醒电池并避免电池损坏。在预充电阶段,仍随时侦测电池电压,达到3V后可随即切入快充模式。
图6:锂离子电池充电器的标准充电流程
在快充模式下,电池的电压以较高速度上升,升高至4.2V时,切换至4.2V的定电压充电,由电池本生的内阻进行限流,此时充电电流就如同图1的CV阶段。随着时间过去,充电电流呈现指数曲线递减,当到达设定电流ICHG的10%,即关闭充电器,同时指示充电完成。
然而,当电池故障时,电池可能无法储存电能,电压抑不会升高,所充入的能量转变成热,除了依靠过温度保护机制之外,IC内部亦具有超时定时器,无论此时电池电压状态如何,只要超过设定充电时间后,随即关闭充电器,以达到多重保护使用者之功能。
使用者亦有可能在充电或式充电完毕后,在未将电源移除的情况下,即抽离电池的情况。为避免造成危险,IC内部应具有如图7, 8的电池存在侦测机制。充电IC会以短时间脉冲(每370ms产生2ms的脉冲)方式抽取电池电流,此时若电池存在,则侦测到的电池电压应大于一预设阀值;若电池已切离,则充电IC侦测到一低电压,即可判定为电池断开状态,并将电池端电压切断,保护使用者安全。
- 基于MAX1501的锂离子电池充电器的研制(01-06)
- SBS管理器确保锂离子电池安全高效(02-23)
- 电池基本知识 锂离子电池基础知识大汇萃(09-09)
- 锂离子电池充电器扩流电路设计(02-24)
- 如何选择锂离子充电管理IC(04-29)
- 智能充电管理可以克服便携式设备面临的挑战(05-11)