微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频识别(RFID) > UHF RFID读写器的设计方案

UHF RFID读写器的设计方案

时间:08-26 来源:收集整理 点击:

将已调信号与原正弦信号相乘再经过低通滤波以及抽样判决器,即可恢复出原始的编码信号,在对接收到的已调信号进行解调时采用相同频率的正弦波,其曼彻斯特编码进行2ASK调制解调的仿真模型如图4所示,仿真结果如图5所示。

\ \

在本文中为了加快系统的仿真时间,将本地振荡正弦波幅值设置为1,频率设为915 Hz,设置脉冲发生器的采样时间分别为0.1 s和0.05 s,带通滤波器参数设置为600~1 100 Hz,低通滤波器的截止频率为200 Hz,抽样判决器的时间设为0.01 s.从图5 中可以清楚的看到,信号经过调制以及解调之后恢复的信号与原始信号保持一致。

2.3 UHF RFID读写器传输性能的研究

任何信号的传输都伴随着噪声,加性高斯白噪声是最常见的一种噪声,它存在于各种传输煤质中,表现为信号围绕平均值的一种随机波动过程。加性高斯白噪声的均值为0,方差表现为噪声的功率的大小。本文对读写器与电子标签之间的信号传输性能的研究就是基于加性高斯白噪声信道的基础之上。

图6给出UHF RFID读写器向电子标签传输方向的通信模块仿真,仿真结果如图7所示。已调信号经过一个加性高斯白噪声信道传输后再经带通滤波器滤除多余的谐波后与正弦载波信号相乘进行解调,解调后的信号经过放大再滤波以及抽样判决就可以得到原始的基波信号。

\ \

在图7 中将编码信号与抽样判决后的信号通过关系比较器进行比较,当两者的结果不一致时,输出1,当两者结果一致时输出0,再将结果与1一起输入错误率统计模块,即可得到误码率,考虑到信号传输过程中的延迟,故在原始信号后加一延迟模块,延迟时间可由仿真图形中进行估计。

2.4 误码率特性分析

本文所建立的UHF RFID 读写器仿真模型是建立在ISO18000 Type B 协议的基础上的,其常用频率为915 MHz,将载波信号频率设为915 MHz.为了降低系统的仿真时间,将每个信号的抽样数设为2,若增加信号的抽样数时,所得的误码率将降低,但同时仿真时间将增大,取抽样信号的功率为1 W,观察信噪比从1~15 dB变化时,系统的误码率的变化,误码率曲线如图8 所示,从图中可以看出,当信噪比达到12 dB时,误码率已达到10-4,系统具有较高的抗干扰性能。

\

3 结语

本文提出了基于ISO18000-6 type B 协议下UHF RFID读写器的设计方案,并对其通信过程进行了Simulink仿真,给出了曼彻斯特编解码以及2ASK调制解调的模型。通过结合实际中经常遇到的高斯白噪声信道分析了系统的信道抗干扰性能,给出了在915 MHz频率下,系统的误码率曲线,分析了系统的抗干扰性能,在SNR 达到12 dB,误码率达到10-4 ,系统具有较高的抗干扰性能。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top