微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频识别(RFID) > 无源高频RFID芯片的FPGA原型验证平台设计

无源高频RFID芯片的FPGA原型验证平台设计

时间:07-15 来源:电子技术应用 点击:

误差,线圈匝数预留3.5、4.5圈可选的跳线。调试时根据实际测量结果,确定并联电容的容值和线圈的具体匝数。

2.4.2 天线调试

验证平台电路板加工、焊接完成后,使用阻抗分析仪测量天线的实际电感值,本次测到的天线线圈的电感值近似为2.9 nH;根据式(1)重新计算并联电容的值为47.55 nF,校正理论计算与加工后实际值之间的偏差。

并联电容值确定后,使用矢量网络分析仪测量天线的谐振频率。根据谐振频率的偏移情况,逐步增加或者减少线圈匝数,直到达到指定的谐振频率13.56 MHz。

根据矢量网络分析仪的测量结果显示,本次天线能成功谐振在13.56 MHz,此时线圈匝数为4,并联电容大小为47 nF。图6、图7为矢量网络分析仪测量的谐振图。

3、测试结果

FPGA原型验证平台经过器件选型、硬件设计、数字逻辑单元的移植实现以及系统调试后,能够与支持ISO/IEC15693协议的阅读器进行稳定通信。图8显示了阅读器下发查询(Inventory)命令时空间场波形信息;图9显示了阅读器下发查询(Inventory)命令时,标签收到的时钟信号(clk)、解调信号(demo_data)以及标签返回的调制信号(modu_data)波形。

本文结合RFID芯片的设计特点,描述了一种FPGA原型验证平台的设计,支撑无源高频RFID芯片的FPGA原型验证。经测试表明,该验证平台能够实现ISO/IEC15693协议中的通信功能,能与多款阅读器进行稳定的通信,读写性能优异,稳定性、可靠性都能达到预期的效果,满足标签芯片FPGA原型验证的需求。

本文设计的FPGA原型验证平台还可以作为电子标签芯片的原型设计提供给客户试用,提前进行软件开发;还可以提前进行第三方的认证工作。另外,该验证平台对于符合其他协议标准的RFID芯片的验证平台的设计也有很好的参考价值。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top