微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频识别(RFID) > 一款新型太阳能无线超高频阅读器的设计

一款新型太阳能无线超高频阅读器的设计

时间:10-06 来源:电子技术应用 点击:

  射频识别技术[1]是一种非接触式自动识别技术,是构建物联网的关键技术。根据通信的频段来划分,可以分成低频、高频、超高频和微波等射频识别系统。目前市场上存在的超高频阅读器总是摆脱不了与上位机之间的物理连线,物理连线主要用于供电和数据交换,在某些特殊场合,这些物理连线十分不方便,比如工作于户外的UHF阅读器。在这样的背景下,本文基于UHF协议ISO/IEC18000-6C,结合太阳能充电技术和无线通信技术,设计出一款太阳能无线UHF阅读器,它能够工作于户外,与上位机实现无线通信。该阅读器能够在USB充电和太阳能电池板充电两者间自由切换,在有可接入电源时,通过USB充电;没有可接入电源时,即在户外时,通过太阳能给锂电池充电。蓝牙转串口模块实现阅读器与上位机的无线通信。本文详细介绍阅读器的实现过程,主要工作有阅读器模块的设计、电源管理模块的设计、PIE编码和Miller序列解码的软件实现、μCOS-II实现多任务操作。

  1 太阳能无线UHF阅读器硬件电路设计

  1.1 整体框图设计

  如图1所示,系统硬件整体框图由3个模块组成:无线通信模块(蓝牙模块)、阅读器模块和电源管理模块。蓝牙模块实现阅读器与上位机的无线通信,接收上位接发送的命令,同时向上位机传送读到的标签数据。阅读器模块完成命令的PIE编码和射频信号的发送、标签反射波的解调和Miller序列的解码、电池电压的检查和掉电唤醒。电源管理模块主要完成太阳能的采集、USB充电、锂电池的升压以及产生电池电压检测信号。

一款新型太阳能无线超高频阅读器的设计

  1.2 无线通信模块

  本次设计的无线通信模块采用HC-05串口蓝牙模组[2],它采用蓝牙V2.0协议标准。配对时电流为30 mA~40 mA,配对完毕不通信时电流消耗为2 mA~8 mA,通信时消耗电流8 mA,通信距离约10 m。蓝牙模块串口TXD接阅读器模块RXD,蓝牙RXD接阅读器模块TXD,并接上共地线。

  1.3 阅读器模块设计

  阅读器模块主要分成两部分:基带数据处理和射频信号收发。

  基带数据处理部分主要完成命令的发送和标签返回信息的解码。发送的命令采用PIE编码,标签返回信息的编码格式可以为副载波FM0基带或者Miller[3]副载波调制序列。

  射频部分完成基带信号的调制、调制信号的发射、标签反射信号的解调和放大。信号的发送过程:由RF合成器SI4133产生915 MHz载波,基带信号通过ADI公司的射频开关器件ADG198实现对载波信号的OOK调制,调制后的信号经过RF2162实现功率放大。功放RF2162为发热器件,所以在硬件布板时应该处理好RF2162的散热,软件设计上也要做好RF2162的保护,让其工作一段时间后关闭一段时间。放大后的射频信号经过微带线完成50 ?赘阻抗匹配,由天线发送出去。

  信号的接收过程:接收电路采用UHF读写器解调电路专利[4],标签反射信号经过50 微带线,单端信号变双端信号,如图2所示,双端信号相位相差180°。在接收信号过程中,一直有载波发送(给标签提供能量),所以接收信号和915 MHz载波分成两路在二极管上实现混频解调,再分别经过LC滤波,成为两路相位差为180°的差分信号,经过差分放大,最后经过电压比较芯片MAX942,解调出标签返回的FM0或Miller序列。

一款新型太阳能无线超高频阅读器的设计

  本设计采用ARM7芯片LPC2138[5]处理基带信号。通过调节PWM定时器的输出波形周期和脉宽实现PIE波形的产生。通过定时器0的捕获通道0捕获FM0或Miller序列,并配合软件解码。

  1.4 电源管理模块设计

  根据设计需求,阅读器每天连续读卡时间约为2 h(其余时间待机,功耗较低),每小时功耗为330 mW,锂电池充满一次电需工作10天。因此,选择6 800 mAH的锂电池作为储能装置。根据太阳能电池板的工作效率和当地太阳光的照度,选择10 W的太阳能电池板作为太阳能采集设备。

  电源管理模块的具体要求为:(1)可以用USB对电池充电,也可以用太阳能电池板对电池充电,当用USB充电时,切断太阳能电池板充电回路。(2)电源管理模块向外提供稳定的+5 V电压,所以需对锂电池进行升压稳压。(3)MCU需时刻监测电池电量,如果电池电量低于一定额度(3 V),需强制使系统进入掉电模式。(4)当电池电压恢复到正常值(3.9 V)后,将系统从掉电模式换醒。电源管理模块电路图如图3、图4所示。

一款新型太阳能无线超高频阅读器的设计

一款新型太阳能无线超高频阅读器的设计

太阳能充电电路以CN3722[6]为核心,它采用恒定电压跟踪法(CVT[7]),能最大效率地利用太阳能。通过电阻RCS设定恒流充电时充电电流的大小,本次设计恒流充电电流为1 A。该芯片能够对锂电池实现三段充电法充电。USB充电芯片采用TP4056,按要求,有USB充电时,断开太阳能充电电路,如图4所示,采用PMOS来实现。当有USB充电时,Q3:Vg=5 V,Vs<4.2 V(锂电池最大电压),Q3截止。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top