开关电源的测量中安全性解决方案
的寄生电容。因此,浮动测量将受到振荡性的破坏,即图2(a)所示的振铃出现。
浮动测量新方法的引入
所谓"浮动"测量,即测量的两个点都不处于接地电位,该测量也常称为差分测量。
"信号公共线"与地之间的电压可能会升高到数百伏。"浮动"参考接地的示波器是通过使接地系统无效或使用隔离变压器,将"信号公共线"从地面断开。为此需要通过具有内置隔离通道技术的TPS2000系列示波器,使得工程师和技术人员可以快速、准确、经济地进行多通道隔离测量。
因为浮动测量技术使机壳、机柜和连接器等仪器可接触部件具有探头地线连接点的电势,而该技术是危险的,不仅是因为它升高了示波器上存在的电压(操作人员可能会遭到电击),还因为它向示波器的电源变压器绝缘体上累积了应力,虽然该应力不会立即引发故障,但是可能在将来引发危险的故障(电击和火灾),即使将示波器恢复至正常地接地操作也无法挽回。这就有可能造成不仅浮动参照接地的示波器很危险,而且会使测量方法不准确,即该电势的误差是由于在地线连接点处直接将示波器机壳的总电容与被测电路相连所致。于是又需采用安全放在第一位的隔离通道(LsoIated ChanneI)技术作为解决方案。
隔离通道技术
在当今使用的宽带示波器系统中,最常用的隔离方法是双路方法,将输入信号分为两个信号:低频和高频。该方法需要每个输入通道都具有昂贵的光耦合器和宽带线性变压器。
使用创新的隔音技术,取消了双路方法,而对每个从直流到示波器带宽的输入通道仅使用一个宽带信号通路。通过该技术,可以提供第一批具有四个输入 (1solated Channel)、低成本并使用电池供电的示波器,该电池可供示波器连续工作八个小时。对于需要进行四通道隔离测量,并希望获得由低成本并使用电池供电的示波器提供的性能和易用性的工程师和技术人员来讲,选择内置有隔离通道技术的TPS2000系列示波器是理想工具。
图3说明了隔离通道的概念。
图3 将安全放在第一位的IsolatedChannel技术,可以快速、准确、经济地进行多通道隔离测量
四隔离通道输入体系结构向"正"输入和"负基准"导线(包括外部触发输入)提供了真实且完整的通道间隔离。
电源控制电路(例如电机控制器、不间断电源和工业设备)中的浮动测量要求最为严格。在这些应用领域中,电压和电流可能大到足够对用户和测试设备造成威胁。
要保证测量质量,隔离通道技术是首选解决方案,并且该技术始终将安全放在第一位。如果存在较大的共模信号,能有效的通道与通道隔离将寄生效应的影响降到最低,测量系统的容量越小,那么它与环境的交互影响也就越小。完全隔离的电池供电仪器本身并不涉及接地问题。每个探头都具有一条与仪器底盘隔离的"负基准"导线,而不是使用一条固定的地线。
而且,所有输入通道的"负基准"导线都彼此隔离。这是避免短路危险的最佳方法。它还在最大程度上降低了信号弱化阻抗,而该阻抗会影响单点接地仪器中的测量质量。
无论使用电池电源还是通过交流电源适配器连接到交流电源,TPS2000系列示波器的输入始终是浮动的。因此,这些示波器与传统示波器所体现的限制并不相同。传统示波器侧重于性能(带宽,多功能性),牺牲了进行浮动测量的能力。
电源质量测量
根据SMPS组成,它的测量可分有源器件(开关元件)测量、元源器件(磁性元件) 测量、输入交流供电测量及电源质量测量,值此仅对电源质量测量作介绍。
电源质量不仅仅取决于发电机。它还取决于电源的设计和制造以及最终用户负载。电源的电源质量特征定义了电源的"健康"状况。
现实的电线从来不会提供理想的正弦波,线路上总是有一些失真和杂波。开关电源给供电电源施加了一个非线性负载。因此,电压和电流波形不是完全相同的。电流在输入周期的某一部分被吸收,使输入电流波形上产生谐波。确定这些失真的影响是电源工程的一个重要部分。
为了确定电源线上的功率消耗和失真,应该在输入阶段进行电源质量测量,如图4为所示的电压和电流测试点。
图4 开关电源电源质量测试点示意图,电源质量测试必须使用同一时刻的输入VAC和IAC读数
电源质量测量包括:有功功率;视在功率或无功功率;功率因数;波峰因数;根据EN61000-3-2标准进行的电流谐波测量;总谐波失真(THD)。
应用具有运行软件包(如TDSPWR3)的数字示波器并行电源质量测量。
运行软件包(如TDSPWR3)的数字示波器,如TDS5000B系列是替代传统的功率表和谐波分析仪进行电源质量测量的有力工具。
使用数字示波器比传统工具有明显的优势。仪器必须能捕获到基波的高达50次谐波分量。根据各地使用的标准,电源工频频率通常是50Hz或60Hz。
- DC/DC模块的电源纹波测量(03-07)
- 如何抑制开关电源纹波的产生 (10-03)
- 数字转换器噪声对示波器测量的影响(06-03)
- 探讨:干扰噪声系统基本知识(11-12)
- 200M的示波器竟然测不了10M的晶振?(04-04)
- 输入电容对于高频测试的影响(04-12)