参量换能器收发电路设计
3 发射电路的设计
参量换能器的超声波发射电路,主要包括信号产生电路和功率放大电路。信号产生电路主要是用来产生超声波信号,功率放大电路主要是用来提高电路的发射功率从而驱动换能器发射出超声波信号。
3.1 信号产生电路
参量换能器采用正弦信号作为载波信号;调制信号可采用Ricker信号(由PC机产生)。正弦信号拟用LM741设计了一种RC桥式正弦波振荡电路,如图3所示。该电路采用电压串联负反馈,具有输入阻抗高、输出阻抗低的特点。图中,D1,D2为二极管元件,其作用是限制输出电压的摆幅不断增大,避免输出波形失真。
放大电路由电阻R1和R2,R3以及Rd的等效电阻Rf构成的负反馈组成,其中Rd为二极管的内阻。放大电路的放大倍数为:
选频网络由RC组成的串并联电路组成,其特征频率为:
根据试验需要,可以调整R,C的值,得到需要的振荡频率。
该选频网络的频率特性为:
根据以上各关系式以及电路的起振条件,可以确定放大电路反馈回路中R1和R2,R3的比值。
3.2 功率放大电路设计
功率放大电路采用PA141作为放大器,构成类似桥式的驱动电路,来驱动压电陶瓷换能器。具体电路如图4所示。
PAl41是"APEX"公司推出的8脚高压单片集成的MOSFET运算放大器,它具有工作电压高(350 V)、静态电流小、输出电流大(峰值120 mA)等优点。PAl41内部的输入保护电路避免了过高的共模、差模电压及静电泄放的影响,其安全工作区无二次击穿限制,因此只要选择合适的限流电阻就可驱动不同的负载,并可通过PAl41的外部可调补偿电路来选择合适的带宽和增益。使用该放大器不仅简化了电路设计,而且可提高系统的可靠性。
在图4中,运放A1,A2构成双重补给的桥式电路,其中A1的增益为20 dB,A2的输出与A1反相,从而构成差动式放大电路。若输入正弦信号的电压幅值为15 V,则施加在换能器两端的驱动电压的变化范围为±300 V。由于PAl41的输出电流较低,为了得到较高的输出功率,电路中接人两个功率MOS管,以提升输出电流,从而得到较高的输出功率来驱动换能器。
4 接收电路的设计
参量换能器的回波接收电路由前置放大电路、带通滤波电路和末级放大电路组成,如图5所示。
4.1 前置放大电路
前置放大电路采用具有低功耗、宽频带、高精度和高可靠性等优点的AD620仪用放大器,它是一种电阻可编程的放大器,其内部是由三运放组成的仪表放大器结构,内部的电阻经激光技术校准,整个放大器具有很高的精度和共模抑制比。AD620的增益是由电阻RG决定的,使用1%的精密电阻,它就能提供精确的增益G。该放大器只需要改变一个管脚1,8之间的电阻值,就可以在1~1 000之间调整增益,其增益公式为:
可根据实验需要,选择合适的RG来确定电路的增益。
4.2 带通滤波放大电路
带通滤波器是用高阻抗运算放大器(TL082)和RC阻容元件构成的放大器和有源带通滤波器。
二阶有源带通滤波器的传递函数为:
式中,ω0为带通滤波器的中心角频率,ω0=2πf0,(f0=8 kHz);Q为品质因素;A为滤波器的增益。若BW为带宽,则有Q=f0/BW,滤波器的参数满足如下关系:
当所需带宽为BW=4 kHz,增益A=5,C1=C2时,则将已知数值代入上式,计算得:若C1=C2=681 pF,则R1=11.7 kΩ,R2=19.5 kΩ,Rf=117 kΩ。
末级放大电路是由普通的反向运算放大器和电阻元件构成。通过调节电位器来改变放大器的增益,使接收电路的输出幅值满足数据采集电路板NI6024的输入要求。
5 供电电源设计
在设计的参量阵收发电路中需要土175 V,±15 V,±5 V等电源。对于高压电源的设计,实验中采用推挽式稳压电源功率转换电路,具体电路如图6所示。
高压电源设计中,由NE555组成的电路提供脉冲信号,SN75372集成芯片是双通道与非门TTL/MOS专用接口电路,其中管脚2是两个与非门公用的使能输入端(高电平有效),管脚1/7和管脚3/6分别是两个与非门的输入/输出端;管脚4是数字地;管脚8接5 V直流电源,管脚5接15 V直流电源。利用该接口电路,就可以直接用TTL电平来驱动MOSFET功率管。R4与R5构成分压电路,用来确定MOSFET功率管IRF520的栅源电压VGS,进而控制功率管导通时的漏极电流ID;RS是限流电阻,用于限制漏级电流ID的大小,它可以使功率管导通时的最大漏级电流IM基本恒定,避免功率管导通瞬间过大的电流冲击。该电路通过变压器输出后,将桥式整流电路变压器副边中点接地,再接上滤波电容,并且两个电容的中点接地,可以得到较高的正、负直流输出电压,满足实验中高压电源的需求。
另外,对于±15 V和±5 V电源,可以利用已有的24 V稳压电源,通过三端稳压集成电路模块78和79系列得到所需要的直流电压。
- 一种AC/DC电源供电系统的应用新方案(05-04)
- 锂离子电池用保护电路的低功耗设计(07-07)
- 一种准谐振反激式控制器功能简介 (10-27)
- LMK0480X 产品供电电源设计指导(08-24)
- SLC供电电源的设计电路(01-29)
- RS-485自收发电路的参考设计(01-20)