电源管理IC优化了一流的电路模块
时间:10-20
来源:EDN
点击:
集成升降压和升压型稳压器能力
具有中高输出电流的低电压轨 (例如,用于给微处理器内核供电并低至 0.8V的电压轨) 可以高效地从同步降压型稳压器产生。然而,许多时尚型多功能便携式电子产品仍然需要一个+3V或+3.3V的中间电压轨。通过把同步升降压型开关操作能力集成到PMIC之中,可在整个锂离子/锂聚合物电池输入范围内高效地提供3.3V稳压,从而增加了操作裕度。此外,同步升压型稳压器还能够以高于80%的上佳效率来实现至高于锂离子电池电压范围的电压轨"升压"转换。而且,高开关频率减小了外部组件的尺寸,而采用陶瓷电容器则降低了输出纹波。
较长的电池使用寿命和运行时间
能否准确地将锂离子/锂聚合物电池充电至其最终的浮动电压,将对电池的使用寿命产生重要的影响。这是通过选择一个具有严格浮动电压准确度并运用准确充电终止算法的合适电池充电IC来管理的,所有这些将最大限度地延长电池的运行时间,而不会导致电池被过度充电。此外,低系统待机(静态)电流以及利用同步整流实现的高开关稳压器转换效率产生了很小的系统电流消耗,从而进一步地延长了电池的运行时间。在轻负载条件下,突发模式(Burst Mode)操作将自动地减小开关稳压器静态电流(Iq),以帮助降低器件的电流消耗。
下面,我们将介绍两个具体的实例。
LTC3586 PMIC
LTC3586 PMIC集成了1个开关PowerPath管理器、1个独立型电池充电器、4个高效率同步开关稳压器(1个升降压型、1个升压型和2个降压型稳压器)和1个始终保持接通的LDO,它们被全部整合在一个紧凑、扁平的38引脚4mm×6mm QFN封装中。
具有中高输出电流的低电压轨 (例如,用于给微处理器内核供电并低至 0.8V的电压轨) 可以高效地从同步降压型稳压器产生。然而,许多时尚型多功能便携式电子产品仍然需要一个+3V或+3.3V的中间电压轨。通过把同步升降压型开关操作能力集成到PMIC之中,可在整个锂离子/锂聚合物电池输入范围内高效地提供3.3V稳压,从而增加了操作裕度。此外,同步升压型稳压器还能够以高于80%的上佳效率来实现至高于锂离子电池电压范围的电压轨"升压"转换。而且,高开关频率减小了外部组件的尺寸,而采用陶瓷电容器则降低了输出纹波。
较长的电池使用寿命和运行时间
能否准确地将锂离子/锂聚合物电池充电至其最终的浮动电压,将对电池的使用寿命产生重要的影响。这是通过选择一个具有严格浮动电压准确度并运用准确充电终止算法的合适电池充电IC来管理的,所有这些将最大限度地延长电池的运行时间,而不会导致电池被过度充电。此外,低系统待机(静态)电流以及利用同步整流实现的高开关稳压器转换效率产生了很小的系统电流消耗,从而进一步地延长了电池的运行时间。在轻负载条件下,突发模式(Burst Mode)操作将自动地减小开关稳压器静态电流(Iq),以帮助降低器件的电流消耗。
下面,我们将介绍两个具体的实例。
LTC3586 PMIC
LTC3586 PMIC集成了1个开关PowerPath管理器、1个独立型电池充电器、4个高效率同步开关稳压器(1个升降压型、1个升压型和2个降压型稳压器)和1个始终保持接通的LDO,它们被全部整合在一个紧凑、扁平的38引脚4mm×6mm QFN封装中。
图1 LTC3586的简化方框图 为了实现快速充电,LTC3586的开关输入级将可从USB端口获得的2.5W功率几乎全部转换成了充电电流,从而提供了高达700mA(从一个电流限值为500mA的USB电源)或高达1.5A(当采用墙上适配器供电时)的充电电流。LTC3586的升降压型稳压器能够提供高达1A的连续电流,并且非常适合于在整个锂离子电池电压范围内(低至2.7V输入)对一个3.3V输出进行高效稳压。其两个降压型稳压器具有100%的工作占空比,而且各能提供400mA的输出电流,并具有低至0.8V的可调输出电压。升压型稳压器能够提供至少800mA的输出电流,且具有一个高达5V的可编程输出。LTC3586的内部低RDS(ON)开关实现了高达94%的降压和升降压效率,从而最大限度地延长了电池的运行时间。此外,突发模式操作还优化了轻负载条件下的效率,静态电流仅为25μA(对于升降压型稳压器)和35μA(对于每个降压型稳压器)。2.25MHz的高开关频率允许使用纤巧型、低成本的电容器和高度<1mm的电感器,并实现了非常低的输出电压纹波。此外,所有的稳压器均能够在采用陶瓷输出电容器的情况下保持稳定,从而实现了小占板面积,且不会发生热问题。 LTC3576 PMIC具有USB OTG支持能力 LTC3576内置1个具输入过压保护和USB On-The-Go(OTG)功能的双向开关电源管理器、1个独立型电池充电器、3个高效率同步降压型稳压器、1个理想二极管、I2C控制功能和一个始终保持接通的LDO,所有这些都被集成在一个紧凑、扁平的38引脚4mm×6mm QFN封装之中(见图2)。
|
- 开关电源的开关损耗(11-25)
- 电源产品可靠性设计方法概述 (11-26)
- 数字技术在开关电源控制中的应用和发展(11-27)
- 几种实用的直流开关电源保护电路(11-27)
- 一种高压开关电源的设计(11-27)
- 平面变压器在开关电源中应用的优越性分析(11-27)