图2 分流式锂离子电池充电控制电路 3 分段式充电控制
单电池循检比较电路采样单电池电压,任何一只单电池电压超过设定值,或门电路就会产生个一过压信号,通过锁定电路断开一路充电阵,使得充电电流减小1/3,当再次产生一个过压信号时关掉第二个充电阵,直至关掉最后一个充电阵。当脉冲负载来临或者进入地影期时,解锁电路产生解锁信号,使得充电控制电路能够进行下一个充电过程。很显然,当恒压充电时,充电电流不是近似指数规律,而是阶梯型逐级递减。分段式锂离子电池充电控制电路见图3。
图3 分段式锂离子电池充电控制电路 4 单电池峰值电压限制型线性充电控制
单电池循检电路分别采样各个单电池电压,经过或门电路取出单电池电压最大值,经过信号变换电路送入限压控制电路,限压控制电路通过动态调整功率管的阻抗控制锂离子蓄电池组中的单电池电压。当任一只单电池电压都未到达设定值时,太阳电池阵以相对稳定的电流通过限压控制电路中的功率管对锂离子蓄电池组充电,功率管的阻抗接近于零;当任一只单电池电压到达设定值时,功率管的阻抗逐渐增大,蓄电池组的充电电流逐渐减小,充电电流减小的规律由锂离子蓄电池组的特性决定(近似指数规律)。这种电路的优点是充电恒压阶段充电电流连续减小,基本上是指数规律,较适应锂离子蓄电池的充电习惯,充电电路的功耗也不大。单电池峰值电压限制型线性充电控制电路如图4所示。
图4 单电池峰值电压限制型线性充电控制电路 几种均衡充电技术
1 恒定分流电阻均衡充电
电阻分流均衡充电原理如图5所示。
图5 恒定分流电阻均衡充电原理 每个锂离子电池单体上都并联一个分流电阻。从电路中可以看出,电阻上的分流电流必须远大于电池的自放电电流,才能达到均衡充电的效果。一般锂离子电池的自放电电流为C/20000左右,所以流过分流电阻上的电流取C/200是比较合适的。
另外,每个分流电阻的偏差也是影响均衡效果的重要因素。经过一定次数的充放电循环后,单电池的偏差可以用下面的公式确定:
V电池电压偏差=R分流×I自放电+2×V单电池×K电阻偏差 若分流电阻取20Ω±0.05%,则电池电压偏差能够控制在50mV范围内。每个电阻的平均功率为0.72W,但是无论电池充电过程还是电池放电过程,分流电阻始终消耗功率。
2 通断分流电阻均衡充电
通断分流电阻均衡充电原理如图6所示。
图6通断分流电阻均衡充电原理 通断分流电阻均衡充电与电阻分流均衡充电的区别就是增加了一个通断开关,这个开关的控制可以由单片机系统软件来实现,也可以通过简单的逻辑电路来实现。采用这种控制方式的均衡电路只在TAPER充电的恒压充电段工作,其他时间通断开关始终断开,这样需要电池组放电时,分流电阻不消耗宝贵的能量。在光照期,太阳电池发电功率是有富余的,这时均衡电路消耗一定的能量对于电源系统来说具有一定的合理性。在LEO轨道,这种均衡电路的工作时间只占10%左右,所以要达到上面论述的均衡效果,电阻值需减小10倍,可见峰值热功耗是相当大的,这是这种电路的主要缺点。另外,通断开关的实效是致命故障,所以必须采用冗余手段。
3 开关电容均衡充电
图7 开关电容均衡充电原理 开关电容均衡充电原理如图7所示,从图中可以看出,顺序开关驱动电路主要由时钟电路构成,它驱动多路开关顺序闭合,顺序把锂离子电池单体接入传送电容器,通过传送单电池之间的不平衡能量,达到均衡充电的目的。同时,通过测量传送电容器上的电压来监测各个单电池的电压。若某个单电池发生短路故障,低电压比较器输出开关禁止信号,禁止短路的单电池接入传送电容器,防止影响其他单电池的正常工作,同时给恒流恒压变换器送入电池低电压报警信号,使恒流恒压变换器根据单电池短路的情况确定正确的恒定电压。这种均衡电路的最大优点是能源浪费极低,缺点是电路复杂,多路开关的通态电阻、高共模限制都会影响均衡充电的实现。另一方面,参数选取比较困难,针对不同的电源系统配置,电路参数需详细的设计与验证,这对研制周期是不利的。
| | | | | |