微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > ADI:5G时代微波技术的展望

ADI:5G时代微波技术的展望

时间:06-22 来源:mwrf 点击:

能为代价——但我们把问题从物理结构转移到了信号处理和算法上。这里可以借鉴摩尔定律,因为无源微波结构不遵循这种动态调整规律。要实现目标,就必须利用可同步优化模拟和数字的优势。蜂窝频率有很多算法与电路技术可供微波领域借鉴。

接下来讨论半导体技术要求。正如前文所述,一流的微波系统通常采用GaAs元件实现。GaAs多年来一直是微波行业的主流技术,但SiGe工艺正在克服高频工作障碍,以便在多项信号路径功能上与GaAs一较高下。高性能微波SiGe Bi CMOS工艺具有这些波束成形系统所需的高集成度,惠及很多信号链以及辅助控制功能。

取决于每个天线所需的输出功率,可能需要采用GaAs PA。然而,在微波频率下甚至GaAs PA都效率较低,因为它们在线性区域内通常会发生偏移。微波PA的线性化是探索5G时代的必然选择,此趋势相比过去有过之而无不及。

那么CMOS又如何呢?能否占有一席之地? 各种文档都已明确指出,CMOS适合大规模调整,这点在60 GHz的WiGig系统中已经得到了验证。考虑到目前尚处于开发的早期阶段,且使用案例也不甚明确,因而很难说CMOS是否、或者何时会用作5G无线电的技术选择。首先必须完成很多通道建模和使用案例方面的工作,以便总结无线电规格以及未来使用微波CMOS的可行性。

5G系统的最后一个考虑因素是机械设计和RF IC分割的相互依赖性。由于最小化损耗方面的难题,IC需要采用天线和基板设计,并考虑分割优化。在50 GHz以内,天线将是基板的一部分,并且预期路由和部分无源结构可能内嵌到基板上。目前有研究机构正在研究基板集成波导(SIW)领域,似乎有望实现此种集成结构。这种结构将可能在多层层压的一侧安装很多RF电路,并路由至前端的天线。RF IC可以以裸片的形式或表贴封装的形式安装在这种层压结构上。在行业文献中,将这种结构用于其它应用有着很好的先例。

超过50 GHz时,天线元素和间距就会变得足够小,可将天线结构封装在内,或集成到封装上。同样,这是目前正在研究的方向,它可能推动5G系统的发展。

无论如何,RF IC和机械结构都必须一并设计,确保路由的对称性,并最大程度减少损耗。如果没有强大的3D建模工具来进行这些设计所需的大量仿真,那么这些工作一项都不可能完成。

虽然本文择要介绍了5G为微波行业带来的挑战,但在未来数年内,仍有数不清的机遇推动RF创新。正如前文所述,严格的系统工程通过在整个信号链中采用最好的技术实现最佳的解决方案。从整个行业来看,从工艺和材料开发到设计技巧和建模,再到高频测试和制造,仍有很多工作需要完成。在实现5G目标的道路上,所有学科都将参与其中。

ADI公司借助其独有的位到微波功能,为5G微波作出了诸多贡献。ADI丰富的技术产品组合以及不断进步的RF技术与无线电系统工程的深厚历史相结合,使我们处于领先地位,带领我们的客户为新兴的5G系统开拓新的微波和毫米波频率解决方案。

正如本文开头所述,现在成为一名无线领域的RF工程师是一件令人激动的事情。5G才刚刚起步,我们还需要完成大量工作才能在2020年以前实现商用5G无线电网络。

作者简介

Thomas Cameron博士是ADI公司通信业务部门首席技术官。 他的职责是为无线电基站和微波回程系统的集成电路作出行业领先的创新。 目前,他正在研发5G系统的蜂窝和微波频段无线电技术。 在此之前,他担任ADI公司通信业务的系统工程总裁。

Cameron博士拥有超过30年的电信网络技术研发经验,包括蜂窝基站、微波无线电以及电缆系统。2006年加入ADI公司前,他曾在Bell Northern Research、Nortel、Sirenza Microdevices以及WJ Communications担任各种RF电路和系统的开发工作。

Cameron博士拥有佐治亚理工学院电气工程博士学位。

来源:ADI--亚德诺半导体

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top