开关电源设计的一般考虑
商,并认真地听取他们忠告。
1.3负载
开关电源供给各种不同的负载,各种负载都有自己的特性,负载对开关电源提出符合自己特性的要求。因此开关电源设计者必须了解负载特性,才能做好符合要求的电源。前面讨论了蓄电池一般特性,如果开关电源作为充电器对电池充电。则开关电源必须具有恒流充电和浮充能力。这里不再讨论。下面分别简要说明其它负载要求
1.3.1 计算机电源
现代计算机要求电源高速切换。现在许多计算机电源为3.3V,从数据库调出数据,要求电源能适应30A/μs负载跃变。举例来说,假定负载从零变化到7A,花的时间小于1μs。如果你的开关电源的带宽20kHz,要变化到新的负载水平时间为1/20kHz=50μs,假设电流上升是线性的,那么你尚缺少的电荷量是(7A/2)50μs=175μC,如果允许3.3V电压波动是66mV,如果此瞬态能量由电容提供,你应当需要175μC/66mV=3mF才能避免电压跌落超过允许值。
值得注意的是你不能用一个3300μF电容达到这个目的,而是应当用许多小电容并联。这是因为母线上电压跌落并不是变换器的带宽限制,而是电容的ESR造成的。你需要最大ESR为66mV/7A=9mΩ的电容。如果每个电容的ESR近似为100mΩ,需要11个电容并联,最好选择300μF的钽电容。当然这种计算是假定变换器输出到负载连线是无电感和电阻的,如果引线长,你就需要更高性能的电源。
在以上计算中另一个假定是变换器有足够的大信号响应。稳定性在以后详细讨论,但你必须确定满足小信号响应误差放大器的摆率(slew rate)也应当是足够的,但这不总是正确的。变换器的大信号带宽不能大于小信号带宽,如果运放摆率较低,大信号带宽可能比较小。
从以上的例子看到为使变换器体积减少,实质上是要变换器具有较宽带宽和高速放大器。在今天的工业界,这是继续推动开关电源向更高的开关频率(带宽不超过开关频率的一半)的主要原因,某些变换器的工作频率现在已达2MHz,带宽100kHz。
1.3.2 要求低噪声
各种负载要求噪声是不同的。例如蜂窝电话电源中射频功率放大器要求低噪声。变换器电源提供放大器栅极和漏极(放大器由FET构成)电压,如果电源上有变换器开关频率的纹波,那么放大器输出也就有纹波,因为输出功率由栅极和漏极电压决定,通过改变这些电压来控制输出功率大小。而放大器输出是射频,纹波是载波频率的边带。由于纹波被接收机作为信号解调产生的边带,所以很容易看到你不需要的纹波(谐波)。
有些情况就不一定。你的和提出要求的工程师研究研究,是否一定要很高的噪声要求,并告诉他,噪声要求越高,代价越大。
要满足低噪声的要求,应当考虑电感电流在输出电容ESR上产生的峰峰值纹波和二极管及晶体管转换产生的开关噪声两者的造成纹波。在要求非常低噪声时,想用足够大的滤波电感和多个电容并联是不切实际的,一般在变换器输出加后续线性调节器或外加滤波环节。
后续线性调节器决不是好的选择,因为效率低。一般的办法在主滤波器后面增加一级LC滤波器(图1.2)。如果反馈从原来输出电容端取回,主反馈保持原来的稳定性,而与外加滤波无关。但外加的LC滤波是不可控制的,当阶跃负载时将引起振铃现象,破坏了引入附加滤波器的目的。
如果将反馈包含外加滤波器,这将引入两个额外的极点,这两个极点要是处于低频段,将引起变换器工作的不稳定。一般取外加滤波器的谐振频率为变换器带宽的10倍,仅需要很小的相位补偿处理(在以后详细讨论),同时仍然能给开关频率适当地衰减。一般电感取得较小,电容较大,减少变换器的输出阻抗。串联电感在数百nH到几个μH,一般不用铁氧体磁珠,磁珠不能抗直流磁化,而采用小的MPP(皮莫合金磁粉芯)磁珠或铁硅铝磁芯,1匝输出汇流条通过它即可。
如果你既要快速瞬态响应,又要低噪声,那是最糟糕的负载。那你得运用以上的技术,还得花费许多心血。

1.3.3 电话
电话大约在100年前出现的,一直使用大量的铁和铜,而不是半导体。它是由电话线供电,而不是电网供电,这就是为什么电灯不亮,而电话照样畅通。电源距离在几百米,甚至几千米以外,在电话和电源之间引入了较大电线电阻和电感。
电话有三个不同的模式:既不通话又没有振铃,通话,待通。这三种状态具有不同的特性,每种特性在每个国家也是不同的。
为了解驱动电话振铃有多困难,拿出一些数据来考虑。在振铃状态,电话看起来像一个电感和电容串联并用一个低频正弦波电源驱动。此正弦波在电话端电压最小40Vrms(美国)或35V(德国)。实际上,由于电源输出在达到电话之前经过不同
开关电源 相关文章:
- 开关电源的开关损耗(11-25)
- 数字技术在开关电源控制中的应用和发展(11-27)
- 几种实用的直流开关电源保护电路(11-27)
- 一种高压开关电源的设计(11-27)
- 平面变压器在开关电源中应用的优越性分析(11-27)
- DC-DC开关变换器中混沌现象的研究综述(11-27)
