无外接电阻的2倍增益采样与保持放大器
当你需要同时采样一个信号并放大时,可以将一个增益为1的通用采样与保持放大器与一个电压增益为1的放大器作级联。除一些特殊情况以外,这样的一款放大器都有两只外接电阻(参考文献1)。这些电阻即使在采样保持放大器的稳定状态下也会耗散功率。在单片IC中,电阻的功耗以及发热还不是外接电阻的唯一缺点。在一个硅片中集成精密电阻需要更多的工艺步骤,因为这类电阻都是薄膜NiCr(镍铬)或SiCr(硅铬)元件。制造商用激光修整这些电阻,以获得严格的容差值,从而导致IC的高成本。由于这些电阻占用的芯片面积大于标准信号处理晶体管,因此芯片面积一定更大,进一步增加了最终成本。无疑单片IC的设计者要尽量避免使用精密电阻。
如果一个采样保持放大器需要的电压增益为整数(多数情况下是这样),可以用一种替代方法增加输出信号的幅度。对电压增益G,电路可以同时跟踪临时对地跟踪电容的输入电压VIN。随后,在跟随中产生一个中断,并取消其中G-1个电容的对地基准。同时,跟踪电容逐个堆叠起来。堆叠后的电压是所有这些电容电压的总和,因此得到总值为GVIN。当采样指令发出时,常数电压GVIN保存在第G+1个对地存储电容中。
图1为一个电压增益为2的采样保持放大器实例。电压跟随器用关断功能控制着电容C1、C2和C3上的电势。设计采用Analog Devices公司的AD8592双运放,因为它们在关断模式的输出泄漏电流可以低至10pA(参考文献2)。采样保持放大器的运行可以看时序图(图2)。外部逻辑控制信号QS为低电平,而电容C1和C2同时跟踪其输入端电压。跟随器A1、B1和A2的关断输入捆绑在一起。当QD为高电平时,它们工作,因此输入电压出现在A1和B1的输出端,而在A2的输出端没有电压。在QD从高到低转变后,每个受控跟随器后的空槽关闭。当Q为高电平时,B3和B2导通。因此,C2上的电压出现在B3的输出端,输入电压的电势出现在C1的较低结点上(IC2的第2脚)。由于C1的电压与输入电压和输出电压相等,B2跟随器为2VIN。因此电容C3充电到电压2VIN。在QS的高至低过渡后,接下来是另一个空槽,以防止电路中的任何交叉导通。在QS下一次从高至低转变时,重复这个步骤。
A3跟随器用作一个阻抗转换器,输出C3上的电压。单个NOR和AND门与作为延迟线路的运放IC6一起修正单一的外部逻辑控制信号,以建立正确时序的内部逻辑信号QD和QS。
对于噪声分析,假定每个跟随器的噪声特性都是相同的,即每个跟随器输出电压的元件随机标准差为sA。在跟随周期结束时,C1与C2都充电到输入电压。VC2电压的标准差只对跟随器A1是sA。而VC1电压的标准差为?2 sA,因为C1通过两个串联的跟随器B1和A2充电。因此,电压VC1+VC2的标准差就是?3 sA。电压VC1+VC2在相同周期内通过两个级联跟随器B3和B2加在C3上。另外,VC3电压通过跟随器A3加在输出上。由于所有这些噪声源都相互独立,并且它们都是串联作用,输出电压的标准差为sOUT= ?6sA。增加整数增益至G值便得到?3 GsA。现在提出一个RSNR(相对信噪比),为增益G与输出端噪声相对增量之比,可得:
RSNR=
对于图1中的采样保持放大器,RSNR等于0.8165,意为电路的噪声特性略差于单个跟随器的情况。当增益为3时,RSNR值为1,而从增益4开始,RSNR为1.155,它随增加的增益而逐渐上升。结果是,当电压增益为4以上时,采样保持放大器的噪声特性要好于单跟随器的情况。
参考文献
1. tofka Marián, "Gain-of-two instrumentation amplifier uses no external resistors," EDN, Feb 15, 2007, pg 81.
2. "AD8592 Dual, CMOS Single Supply Rail-to-Rail Input/Output Operational Amplifier with ±250mA Output Current and a Power-Saving Shutdown Mode," Analog Devices Inc, 1999.
作者:Marin Stofka, Slovak University of Technology, Bratislava, Slovakia
保持放大器 相关文章:
- 无需外部电阻的反相取样保持放大器(10-20)
- 不外接电阻的双输入采样保持放大器(03-11)
- 不外接电阻的双输入采样保持放大器原理分析 (07-17)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...