微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 射频无线通信文库 > 二次变频和像频干扰

二次变频和像频干扰

时间:02-19 来源:mwrf搜集整理 点击:

本文是根据上世纪八十年代初的读书笔记整理的,笔记的内容来自苏联专家在一九六零年在哈军工的讲稿,该专家在一九五三年主持设计了苏军举世著名的克劳克短波通信机。一九五六年在留学美国的郑博士带领下,714成功地仿制了该机,命名为56式。本文的内容是一九四八年建立起来的,老一辈无线电工作者非常熟悉这些常识,现在人们已经遗忘了,因而在论坛里不少人质疑它的正确性。后经北广的郭教授修改后,在此献给广大广播爱好者。

1、像频干扰和危害性

短波接收机存在三大干扰,同频干扰、邻频干扰和像频干扰。同频干扰在硬件上没有办法解决,只能用方向性天线来避开干扰,如果干扰与接收信号来自同一方向,这种方法就失灵了。在数字信号处理中,可用带内陷波器减轻和消除同频干扰,这只能在DSP中用软件实现。邻频干扰可用同步检波消除,电路已相当成熟(另文介绍)。像频干扰就得用二次或多次变频来解决,这就是本文讨论的内容。

像频是超外差收音机特有的现象,在一个高差式机中,设信号频率为fs,振荡频率为fc,中频fid=fc-fs,在比fs高二个中频处就有一个频率fm,它象是以fc为镜子,站在fs处看到的镜像,所以称像频,如图1所示。

高差式变频的像频

图1、高差式变频的像频

像频如果位于输入回路的通频带内,通过外差的变频作用就会把像频位置以及附近的电台信号搬移到中频带内,对接收信号形成干扰。如果像频位置以及附近处无信号,就只增加了点噪声,降低了信噪比;如果像频处正好有一个电台信号,该信号就会和接收信号差拍形成啸叫,较强的像频会喧宾夺主,抑制掉输入信号;如果电台信号不正好在像频处,而是在像频附近,则会形成混台,产生偏调失真。

像频对接收机的干扰主要出现在短波段。在中波段,磁性天线的空载Q0都在200左右,设计值一般取Q0=100,即使在中波高端,输入回路的通频带也不会大于20KHz,因此中波段的像频抑制可轻松达到30dB 以上。在短波高端,如果用磁棒或框形天线,这时线圈电感只有1微亨左右,Q=60~80,通频带约在310~500KHz ,像频干扰尚能达到15~20 dB。如果用拉杆天线,70~85cm的拉杆天线相当于8pF 的电容与35~70Ω的电阻串联,这个电路加在输入回路上后,线圈的Q值会下降到10以下,致使短波高端的通频带宽度会大于1.5MHz,像频抑制会降到3dB左右。

接收短波时遇到像频干扰的概率到底有多大?全世界共有1.5万座短波广播电台,而国际广播米波段只有526个频道,平均每个频道上有28个电台。当然各个电台会在不同的时段采用不同的频率广播。统计表明,在亚洲像频干扰的概率是百分之三十五。

2、二次变频抑制像频干扰的原理

版主在论坛上讲:比如你做一个带宽6KHz 的滤波器,中心频率是20MHz,Q=20 MHz /6 KHz ≈3333;而你做一个带宽455KHz 的滤波器,Q=20MHz/455KHz≈44,所以二次变频就那么回事,没必要迷信它。这段话可看成是数学对二次变频的注解。哲学家说,数字是自然科学的灯塔,公式B=f0/Q的确启发我们的前人发明了二次变频,使我们爱好者今天仍从中得到恩赐。

如图2所示,在二次变频中,设接收信号频率是fs,一本振是fc1,一中频fid1 = fc1- fs,只要把一中频fid1 选取得足够高,第一像频fm1=fs+2 fid1 就远离fs,不会落入输入通频带内。二次变频还会产生第二像频fm2=fc2+fid2 = fid1+2fid2,由于第二中频频率较低,频通带很窄,第二像频不会落入带内;并且fm2是一个固定频率,可用陷波或吸收回路把它彻底抑制掉。可见,只要选择足够高的一中频,即使用拉杆天线,短波高端的像频抑制也容易做到40dB以上。

高差式二次变频的像频

图2、高差式二次变频的像频

3、一中频如何选择?

二次变频接收机中,选择合适的一中频对提高像频抑制比是是至关重要的。如果一中频选的较低,第一本振的稳定性容易保证,但复盖系数会大于1,振荡频率的范围超过了一个倍频程,波段变换必须改变电感,调谐机构会复杂化。而且,像频指标做不好,在高端不会大于20dB。一中频值一定要选在没有电台的空档频率上,例如中波与120和90米段之间的2 MHz、3MHz等频点上。二十年前生产的海鸥101收音机,一中频是1.85 MHz,正好位于中波高端与120米段之间。现在电子技术已长足进步,再用低中频二次变频已没有意义。

如果中频较高,但仍在短波频带内,免不了仍要考虑频率空档和波段划分的麻烦。另外,在8~30 MHz范围广播和通信信号密集,两个本振及谐波产生的假信号,本振及谐波与100MHz以下的FM和TV信号之间互调干扰会落入短波带内。还有

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top