微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 精确的温度至比特转换器解决了温度传感器测量难题

精确的温度至比特转换器解决了温度传感器测量难题

时间:03-09 来源:ADI 点击:

 RTD。RTD 故障信息传递到热电偶测量结果中,同时 RTD 温度自动地用来补偿冷接点温度。

热敏电阻器概述

热敏电阻器是电阻值随温度变化而改变的电阻器。与 RTD 不同,热敏电阻器的电阻值在其温度变化范围内的变化可以达到多个量级。为了测量热敏电阻器,要给传感器串联连接一个检测电阻器。给该网络加上激励电流,并进行比例式测量。热敏电阻器的电阻值以欧姆为单位,可以根据这个比率确定。这个电阻值用来确定传感器的温度,进而求解 Steinhart-Hart 方程或查询表数据。LTC2983 自动地产生激励电流,同时测量检测电阻器和热敏电阻器电压,计算热敏电阻器的电阻,并以 ºC 为单位报告结果。热敏电阻器一般在 -40ºC 至 150ºC 温度范围内工作。LTC2983 包含计算 2.252kΩ、3kΩ、5kΩ、10kΩ 和 30kΩ 标准热敏电阻器温度所需的系数。因为有多种类型和电阻值的热敏电阻器,所以LTC2983 可用定制热敏电阻器表数据 (R 和 T) 或Steinhart-Hart 系数来设定。

热敏电阻器:重要的是什么?

热敏电阻器的电阻值 (参见图 7) 在其温度变化范围内的变化可以达到多个量级。例如,一个在室温时 10kΩ 的热敏电阻器在最高温度时可能低至 100Ω,而在最低温度时可能 >300kΩ,而其他热敏电阻器标准可能达至 1MΩ 以上。

图 7:热敏电阻器设计挑战

典型情况下,为了适应大阻值电阻,会使用电流非常小的激励电流源和阻值较大的检测电阻器。这导致在热敏电阻器阻值范围的低端,信号电平非常低。需要输入缓冲器和基准缓冲器隔离 ADC 的动态输入电流和这些较大的电阻器。但是如果没有单独的电源,缓冲器在靠近地时工作不是很好,而且需要最大限度减小偏移 / 噪声误差。LTC2983 解决了所有这些问题 (参见图 8)。该器件整合了一个连续校准的专有缓冲器和多 ADC 架构,该缓冲器能够在地电平甚至在低于地电平时对信号进行数字化。两个匹配的缓冲 ADC 同时测量热敏电阻器和检测电阻器,计算 (基于标准) 热敏电阻器的温度,并以 ºC 为单位报告结果。不需要大阻值检测电阻器,从而允许多个 RTD 和不同类型的热敏电阻器共用单一检测电阻器。LTC2983 还可以视热敏电阻器输出电阻的不同,而自动设定不同的激励电流范围。

图 8:用 LTC2983 测量热敏电阻器温度

LTC2983 包括故障检测电路。该器件可确定,检测电阻器或热敏电阻器是否损坏 / 短路。如果所测温度高于或低于热敏电阻器规定的最大值或最小值,LTC2983 就发出警报。热敏电阻器可用作热电偶的冷接点传感器。在这种情况下,3 个 ADC 同时测量热电偶、检测电阻器和热敏电阻器。热敏电阻器故障信息被传递到热电偶测量结果中,热敏电阻器温度自动用于补偿冷接点温度。

通用测量系统

LTC2983 可配置为通用温度测量电路 (参见图 9)。可给单个 LTC2983 加上多达 4 组通用输入。每一组输入都可以直接用来数字化 3 线 RTD、4 线 RTD、热敏电阻器或热电偶,而无需更改任何内置硬件。每个传感器都可以使用同样的 4 个 ADC 输入及保护 / 滤波电路,并可用软件配置。所有 4 组传感器都可以共用一个检测电阻器,同时用一个二极管测量冷接点补偿。LTC2983 的输入结构允许任何传感器连接到任何通道上。在 LTC2983 的任一和所有 21 个模拟输入上,可以加上 RTD、检测电阻器、热敏电阻器、热电偶、二极管和冷接点补偿的任意组合。

图 9:通用温度测量系统

结论

LTC2983 是开创性的高性能温度测量系统。该器件能够以实验室级精确度直接数字化热电偶、RTD、热敏电阻器和二极管。LTC2983 整合了 3 个 24 位增量累加 ADC 和一个专有前端,以解决与温度测量有关的很多典型问题。高输入阻抗以及在零点输入范围允许直接数字化所有温度传感器,并易于进行输入预测。20 个灵活的模拟输入使得能够通过一个简单的 SPI 接口重新设定该器件,因此可用同一种硬件设计测量任何传感器。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top