一种并行算法计算微波电路的设计和实现
cs算法应用于微波电路特性分析中呢?在介绍这一点之前,本文首先简要介绍Diakoptics算法的数学描述。
图1 媒质中反射和透射现象可以用来形象描述两个微波子电路间的耦合关系
三、Diakoptics算法的数学描述
以两个二端口网络的串、并行连接给出Diakoptics算法的数学描述。图2假设两个子电路的反射及透射波的冲击响应函数分别为:gr1(t),gr2(t),gt1(t),gt2(t)和hr1(t),hr2(t),ht1(t),ht2(t),上标"r"表示反射波,"t" 表示传输波,下标1表示从输入参考面对电路作激励,下标2表示从输出参考面对电路作激励。设f为两个子电路连接后电路的冲击响应函数。使用串行算法,从f 网络输入参考面看入的冲击响应为:
fr1(t)=gr1(t)+gt2(t)*hr1(t)*gt1(t)+gt2(t)*hr1(t)
*gr2(t)*hr1(t)*gt1(t)+…+gt2(t)*(hr1(t)
*gr2(t))n*hr1(t)*gt1(t)+…; (2)
使用并行算法,从f电路的输入端口看入的冲击响应函数fr1(t),ft2(t)以及从f电路的输出端口看入的冲击响应函数fr2(t),ft1(t)分别为:
fr1(t)=gr1(t)+gt2(t)*hr1(t)*gt1(t)+gt2(t)*hr1(t)
*gr2(t)*hr1(t)*gt1(t)+…+gt2(t)*(hr1(t)
*gr2(t))n*hr1(t)*gt1(t)+…
ft2(t)=gt2(t)*hr2(t)+gt2(t)*hr1(t)*gr2(t)*ht2(t)+…
+gr2(t)*(hr1(t)*gr2(t))n*hr2(t)+… (3)
fr2(t)=hr2(t)+ht1(t)*gr2(t)*ht2(t)+ht1(t)*gr2(t)
*hr1(t)*gt2(t)*ht2(t)+…+ht1(t)*(gr2(t)
*hr1(t))n*gr2(t)*ht2(t)+…
ft1(t)=ht1(t)*gt1(t)+ht1(t)*gr2(t)*hr1(t)*gt1(t)+…
+ht1(t)*(gr2(t)*hr1(t))n*gr1(t)+…
其中,*代表时域卷积,上下标的含义不变。
图2 可说明Diakoptics算法的两个子电路连接示意图
多端口子电路连接时,上述算法依然成立,只是式中各冲击函数应换为相应的子矩阵。例如设g网络为输入端有M个、输出端有N个端口的M+N端口网络,h网络为输入端有N个、输出端有L个端口的N+L端口网络(g与h相邻面的端口数目应相同),g网络输入参考面处的反射、传输子矩阵分别为:
和
式中下标代表参考面,i←j的意思为:i为响应所在参考面,j为激励所在参考面;上标代表端口,m←n的意思为:n为输入端口,m为输出端口。同理,g网络输出参考面处的反射、传输子矩阵分别为:
和
h网络相应子矩阵可用同样方法求得。连接后网络的冲击响应函数[f]为:
[fr1(t)]=[gr1(t)]+[gt2(t)]*[hr1(t)]*[gt1(t)]+[gt2(t)]
*[hr1(t)]*[gr2(t)]*[hr1(t)]*[gt1(t)]+…
[ft2(t)]=[gt2(t)]*[ht2(t)]+[gt2(t)]*[hr1(t)]*[gr2(t)]*[ht2(t)]+…
[fr2(t)]=[hr2(t)]+[ht1(t)]*[gr2(t)]*[ht2(t)]+[ht1(t)]
*[gr2(t)]*[hr1(t)]*[gr2(t)]*[ht2(t)]+…
[ft1(t)]=[ht1(t)]*[gt1(t)]+[ht1(t)]*[gr2(t)]*[hr1(t)]*[gt1(t)]+… (4)
其中[fr1(t)]、[ft1(t)]、[fr2(t)]和[ft2(t)]分别为M×M、L×M、L×L和M×L阶子矩阵。下面以[gt2(t)]*[ht2(t)]为例说明如何计算矩阵卷积,并以[gt2(t)]*[ht2(t)]的第一个元素为例,说明其物理意义:
g1←11←2*h1←11←2:h子网络输出参考面上第一个端口的输入通过gh连接面第1个端口的耦合在g子网络输入参考面上端口1产生的输出;g1←21←2*h2←11←2:h子网络输出参考面上第一个端口的输入通过gh交界面第2个端口的耦合在g子网络输入参考面上端口1产生的输出;g1←N1←2*hN←11←2:h子网络输出参考面上第一个端口的输入通过gh交界面第N个端口的耦合,在g子网络输入参考面上端口1产生的输出;所以[gt2(t)]*[ht2(t)]的第一个元素描述了h网络输出参考面上第一个端口上的输入耦合到g网络输入参考面第一个端口的输出。
四、Diakoptics算法在微波电路分析中的实现
Diakoptics源于网络理论,为将其应用于微波电路的分析中,首先需要建立适于使用Diakoptics方法的微波电路的等效电路模型。
1.微波电路的等效时域网络模型
建立微波电路等效时域网络模型的基本方法是:利用基函数技术(或称时域模技术)将参考面处的场表示为选定的正交基函数的线性组合,将一个微波网络等效为一个多