解析微带滤波器的设计
的低频或直流分量通过,抑制高频分量或干扰和噪声。
高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。
带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。
带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。
按滤波器的频率响应来划分,常见的有巴特沃斯型、切比雪夫Ⅰ型、切比雪夫Ⅱ型及等;按滤波器的构成元件来划分,则可分为有源型及无源型两类;按滤波器的制作方法和材料可分为波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。
巴特沃斯滤波器是电子滤波器的一种。巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。这种滤波器最先由英国工程师斯替芬·巴特沃斯(Stephen Butterworth)在1930年发表在英国《无线电工程》期刊的一篇论文中提出的。
切比雪夫滤波器,又名"车比雪夫滤波器",是在通带或阻带上频率响应幅度等波纹波动的滤波器。切比雪夫滤波器来自切比雪夫分布,以"切比雪夫"命名,是用以纪念俄罗斯数学家巴夫尼提·列波维其·切比雪夫(Пафнутий Львович Чебышёв)。
3 微带滤波器的设计指标
微带滤波器的设计指标主要包括:
1绝对衰减(Absolute attenuation):阻带中最大衰减(dB)。
2带宽(Bandwidth):通带的3dB带宽(flow-fhigh)。
带宽(band width)又叫频宽,是指在固定的的时间可传输的资料数量,亦即在传输管道中可以传递数据的能力。在数字设备中,频宽通常以bps表示,即每秒可传输之位数。在模拟设备中,频宽通常以每秒传送周期或赫兹 (Hz)来表示。
亦称谱带半宽度(half bandwidth)或有效带宽。无论仪器中光学系统的质量多么高,经单色器单色化后的光总是有一定的波长(宽度)范围,即具有以所指定波长(额定波长)为中心分布的一定波长范围。通带即指最大吸光度值的一半处的谱带宽度。
3中心频率:fc或f0.
每频程的上限与下限频率的几何平均值称为该频程的中心频率。
4截止频率:下降沿3dB点频率。
用来说明电路频率特性指标的特殊频率。当保持电路输入信号的幅度不变,改变频率使输出信号降至最大值的0.707倍,或某一特殊额定值时该频率称为截止频率。
5每倍频程衰减(dB/Octave):离开截止频率一个倍频程衰减(dB)。
6微分时延(differential delay):两特定频率点群时延之差以ns计。
7群时延(Group delay):任何离散信号经过滤波器的时延(ns)。
群时延即系统在某频率处的相位(相移)对于频率的变化率。
8插入损耗(insertion loss):当滤波器与设计要求的负载连接,通带中心衰减,dB
9带内波纹(passband ripple):在通带内幅度波动,以dB计。
10相移(phase shift):当信号经过滤波器引起的相移。
11品质因数Q(quality factor):中心频率与3dB带宽之比。
电学和磁学的量。表征一个储能器件(如电感线圈、电容等)、谐振电路所储能量同每周损耗能量之比的一种质量指标。元件的Q值愈大,用该元件组成的电路或网络的选择性愈佳。
12反射损耗(Return loss)
13形状系数(shape factor):定义为。
14止带(stop band或reject band):对于低通、高通、带通滤波器,指衰减到指定点(如60dB点)的带宽。
工程应用中,一般要求我们重点考虑通带边界频率与通带衰减、阻带边界频率与阻带衰减、通带的输入电压驻波比、通带内相移与群时延、寄生通带。前两项是描述衰减特性的,是滤波器的主要技术指标,决定了滤波器的性能和种类(高通、低通、带通、带阻等);输入电压驻波比描述了滤波器的反射损耗的大小;群时延是指网络的相移随频率的变化率,定义为 dU/df ,群时延为常数时,信号通过网络才不会产生相位失真;寄生通带是由于分布参数传输线的周期性频率特性引起的,它是离设计通带一定距离处又出现的通带,设计时要避免阻带内出现寄生通带。
4 微带滤波器的设计
通带是两个截止频率之间的频率范围。在截止频率点,输出信号幅值下降到其最大值的0.707倍。
本小节设计一个微带低通滤波器,滤波器的指标如下:
通带截止频率:3GHz.
通带增益:大于-5dB,主要由滤波器的S21参数确定。
阻带增益:在4.5GHz以上小于-48dB,也主要由滤波器的S21参数确定。
通带反射系数:小于-22dB,由滤波器的S11参数确定。
在进行设计时,我们主要是以滤波器的S参数作为优化目标。S21(S12)是传输参数,滤波器通带、阻带的位置以及增益、衰减全都表现在S21(S12)随频率变化的曲线上。S11(S22)参数是输入