微波EDA网,见证研发工程师的成长! 2025濠电姷鏁告慨鎾儉婢舵劕绾ч幖瀛樻尭娴滅偓淇婇妶鍕妽闁告瑥绻橀弻锝夊箣閿濆棭妫勭紒鐐劤濞硷繝寮婚悢鍛婄秶闁告挆鍛缂傚倷鑳舵刊顓㈠垂閸洖钃熼柕濞炬櫆閸嬪棝鏌涚仦鍓р槈妞ゅ骏鎷�04闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋為悧鐘汇€侀弴銏℃櫆闁芥ê顦純鏇㈡⒒娴h櫣甯涢柛鏃€娲熼獮鏍敃閵堝洣绗夊銈嗙墱閸嬬偤鎮¢妷鈺傜厽闁哄洨鍋涢埀顒€婀遍埀顒佺啲閹凤拷26闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋為悧鐘汇€侀弴銏℃櫇闁逞屽墰缁絽螖娴h櫣顔曢梺鐟扮摠閻熴儵鎮橀埡鍐<闁绘瑢鍋撻柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋為悧鐘汇€侀弴銏犖ч柛灞剧煯婢规洖鈹戦缁撶細闁告鍐f瀺鐎广儱娲犻崑鎾舵喆閸曨剛锛涢梺鍛婎殕婵炲﹪鎮伴鈧畷鍫曨敆婢跺娅屽┑鐘垫暩婵挳骞婃径鎰;闁规崘顕ч柨銈嗕繆閵堝嫯鍏岄柛娆忔濮婅櫣绱掑Ο鑽ゎ槬闂佺ǹ锕ゅ﹢閬嶅焵椤掍胶鍟查柟鍑ゆ嫹闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷
首页 > 硬件设计 > 硬件工程师文库 > 电池充电器原理

电池充电器原理

时间:01-24 来源:3721RD 点击:

如,对于额定为1安时(Ah)的电池,C/10的放电电流等于1Ah/10 = 100mA。电池的额定容量(Ah或mAh)是电池在特定的条件下完全放电所能储存(产生)的电能。因此,电池的总能量等于容量乘以电池电压,单位为瓦时。

电池性能的测试

电池的化学成分和设计共同限制了输出电流。若没有实际因素限制性能,电池瞬时可以输出无穷大电流。限制电池输出电流的主要因素是基本化学反应速率、电池设计,以及进行化学反应的区域。某些电池本身具有产生大电流的能力。如镍镉电池短路电流可大到足以融化金属和引起火灾。其它一些电池只能产生弱电流。电池中所有化学和机械总效应可用一个数学因数表示,即等效内阻。降低内阻可获得更大电流。

没有电池能永久储存能量。电池不可避免要进行化学反应并缓慢退化,导致储存电量减少。电池容量与重量(或体积)之比称为电池的能量密度。高能量密度意味着在给定体积和重量的电池中可存储更多能量。

下表给出了个人电脑和蜂窝电话中可充电电池的主要化学成分,以及其额定电压和能量密度(以瓦时每千克,或Wh/Kg表示)。

表1. 常用可充电电池化学成分的能量密度 CELL TYPENOMINAL

表1. 常用可充电电池化学成分的能量密度

CELL TYPE NOMINAL
VOLTAGE (V)
STORAGE
DENSITY (Wh/kg)
Lead acid 2.1 30
Nickel cadmium (NiCd) 1.2 40 to 60
Nickel metal hydride (NiMH) 1.2 60 to 80
Circular lithium ion (Li+) 3.6 90 to 100
Prismatic lithium ion 3.6 100 to 110
Polymer lithium ion 3.6 130 to 150


表2. 常用可充电电池化学成分的特性

Attribute Nickel Cadmium Nickel Metal Hydride Lithium Ion
Energy density Low Medium High
Energy storage Low Medium Medium
Cycle life High High High
Cost Low Medium High
Safety High High Medium
Environment Low Medium Medium


若一次和二次电池都能达到同样目的,为什么不总是选择二次电池呢?原因是二次电池有以下缺点:

实际中,所有二次电池能量都会因自放电较快的损失

二次电池使用前必需充电

电池充电

一个新的可充电电池或电池组(一个电池组中有几个电池)不能保证已充满电。事实上它们很可能已被完全放电。因此,首先要根据制造商提供的、与化学成分相关的指南,对电池/电池组充电。

每次充电要根据电池化学成分按顺序施加电压和电流。因此,充电器和充电算法需满足不同电池化学成分的不同要求。电池充电常用术语包括:用于NiCd和NiMH电池的恒流(CC),和用于锂离子和锂聚合物电池的恒流/恒压(CC/CV) (图1至6)。

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...

图1. 半恒流充电,主要应用于剃须刀,数字无绳电话和玩具

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...

图2. 定时器控制充电,主要应用于笔记本,数据终端,无线设备和蜂窝电话

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...

图3. -DV终止充电方式,主要应用于笔记本,数据终端,摄录像机,无线设备和蜂窝电话

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...

图4. -dT/dt终止充电方式,应用于电源设备和电动工具

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...

图5. 涓流充电,主要应用于应急灯,导引灯和存储器备份

表3. 充电方式

Chemistry Charging Method Feature No. of Terminals Charge Time(hours) Charge Current (CmA) Trickle Current(CmA) Charge Level at End of Charge (%) Figure Reference
Nickel Based (NiCl and NiMH) Semi-constant current charging Most typical system; simple and low cost 2 15 0,1 ---- ---- 1
閻忓繐瀚伴。鑸电▔閹捐尙鐟归柛鈺冾攰椤斿嫰寮▎鎴旀煠闁规亽鍔忓畷锟�

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top