3500W与6000W高档开关电源的剖析
拆解之后发现,两种3500W电源均是用两块大号磁环叠合而成。每块磁环的外径达φ73mm,磁环厚(高)12mm,其绕组线的宽度为φ18mm。选用磁环在100kHz开关高频时不存在漏感问题;而两块扁平面磁环叠合在一起,再紧绕制主变压器的原边绕组和副边绕组、加多层绝缘胶带等。在两块金属铁粉芯磁环平面之间,实际上仍然存在许多小的天然气隙(虽已压紧靠拢),这使得主功率变压器在重负载高频大电流工作时,抗饱和能力大增。这与大号功率铁氧体磁芯的截断面被细磨抛光"镜亮"的状况大不相同。
美、德公司在大功率高频开关电源关键部件上采用的先进技术值得借鉴。可以预计,如果3500W电源的主功率变压器改用传统常规的EE85厚型铁氧体磁芯,不仅体积和重量会成倍增大,而且过载抗饱和能力会明显降低,使电源在浪涌冲击下损坏MOSFET功率管的几率大为增加。由Ascom研制的6000W-48V/112A大功率电源,其主变压器磁芯改为三块φ73mm扁平磁环叠合,这个惊人之举太巧妙、独特而意义深远,十分值得学习采纳。
2.3.2 Boost变换器的方形铁壳储能电感器
拆解后才发现新奇的结构与选材。350V/10A电源Boost电感器是采用三付6块EE55铁氧体磁芯复合而成,但其中心柱截面气隙达5.2mm(每块为2.6mm)。Boost储能电感器的绕组导线并不用常规的多股φ0.47mm漆包线卷绕,而是采用两条极薄的(厚度仅0.1mm)、宽度33mm红铜带叠合,每条薄铜带总长约6.5m,叠合压紧在(可插6块EE55磁芯的)塑料骨架上共绕26圈,再接焊锡导线引出,用多层耐高压绝缘胶带扎紧包裹。这种特殊薄铜带工艺绕制的Boost储能电感量=267μH、Q=0.36,它对于减小高频集肤效应、改善Boost变换器开关调制波形、降低磁件温升均有重要作用。
这又是一项前所未见的重大技术革新。多年来电源技术论文中有关PFC-Boost磁件的设计论文尚未见过这种报道。前几年我在2000W-PFC试验时换用几种大号铁粉芯磁环,或用较大罐形铁氧体磁芯加大气隙,绕制的Boost储能电感器仍发热过快、过高,效果不理想。现受到很大启发。
2.3.3 附加谐振电感器
拆焊350V/10A电源时,发现主功率变压器原边绕组串联的附加谐振电感器,是一种直径为φ33mm的铁硅铝磁环,绕组用多股细线绕3.5圈,电感量为3.2μH。而拆焊6000W电源350V/17A输出型,其原边串接的附加谐振电感器是用φ42mm的铁硅铝磁环。比较几年前试验用的1000W、2000W、3000W电源,曾用加气隙的EE55、EE65、EE70铁氧体做附加谐振电感器,它们比主功率变压器磁芯只小一个等级,且温升较高。可见改用铁硅铝磁环,能大大减小附加谐振电感器重量和体积,是发现的又一项新技术。
为了准确绘制两种3500W电源主板上的所有元器件焊点位置,印制板铜箔走线,以便画出真实的电源电路设计图,我预先测量尺寸,尽量避开焊点,在主板中间位置锯开了印制板(厚2mm的玻璃纤维硬板),终于按1:1的实际比例,用2张A4复印纸即可绘制出电源主板正面元器件布局图、两块控制板焊点位置等。再用2张A4白纸绘制电源主板背面印制板铜箔走线、一些贴片阻容、许多穿孔焊点定位等。并由此初步绘出了3500W电源的主功率变换电路,如图1所示。两种电源的设计结构大同小异,并给出了图2总方框图与PFC、全桥控制板的关系图。
3 3500W两种电源主电路的特点与分析
从实体解剖、拆焊绘制48V/70A通信电源和350V/10A特种电源主板上的所有元器件、印制板铜箔正反两面实际走线、众多焊点的真实定位(有的穿孔、有的并不穿孔只在单面),全桥控制板相互关系,看出一个总体规律。
1)两种直流输出电压和电流大不相同的3500W高档电源(Vo、Io均相差7倍),其主功率变换电路的三大环节基本相同,即电网输入滤波整流电路;PFC系统的Buck-Boost组合电路亦分段控制;全桥变换器移相式控制ZVS软开关电路。
2)两种电源的PFC贴片元器件控制板完全相同。有8只IC和上百个阻容。包括PFC控制板与电源主板连接的双列插头16芯焊脚也完全相同。高密度的PFC贴片控制板仅厚1.0mm,但解剖发现印制板内部还有两个夹层电路设计。
3)两种电源的贴片元器件高密度全桥控制板实体大不相同,其主芯片均用UC3877。48V/70A电源全桥控制板单面布元器件。其总面积比双面均焊贴片元器件的350V/10A电源全桥控制板大一倍;单面元器件的印制板夹层铜箔走线也较简单些。两种电源接外壳监控电路插座结构也不同。48V电源全桥控制板上与主芯片UC3877DWP配合的另外7只IC是LM339X2,74HC05,74HC86,LM358X2,MAX875。350V电源全桥控制板与主芯片UC3877DWP配
开关电源 相关文章:
- EMI噪声分析及EMI滤波器的设计(10-07)
- 开关电源的EMC设计(09-15)
- 多层线路板在开关电源电路中应用(11-07)
- 双激式开关电源变压器存在的风险(01-20)
- 开关电源的分类及应用(02-17)
- 开关电源控制环路如何设计(04-11)