开关电源EMC设计的实现
迅速恢复到零点的二级管称为硬恢复特性二极管,这种二极管在变压器漏感和其它分布参数的影响下,将产生较强的高频干扰,其频率可达几十MHz。
4、 非主回路噪声:
非主回路既是主回路以外的电路包括输入输出控制回路等,一般指图1中除输入及DC/DC变换器以外的部分,其中PWM部分的脉冲控制信号是主要的噪声源。输入回路易受电网的影响,而输出回路易受负载的影响,也都容易将噪声耦合到开关电源内部。
5、 各种元器件及回路的寄生分布参数引起的噪声:
如图3中所示,在EMI的频率范围内,常用的无源器件都不能再被认为是理想的,它们的寄生参数严重影响着它们的高频特性。特别是变压器的许多寄生参数,例如:漏感,原付边之间的分布电容等,都必须加以考虑。图4中,一是Co的作用。散热片k与开关管Q的集电极间虽然有绝缘垫片,但由于其接触面较大,绝缘垫较薄,因此两者之间的分布电容Co在高频时不能忽略。因此高频电流会通过Co流到散热片上,再流到机壳地,最终流到与机壳地相连的交流电源的保护地线de中,以产生共模辐射。二是C12的作用。脉冲变压器的初、次级之间存在的分布电容C12,可能会将原边高频电压直接耦合到副边上去,在副边用作直流输出的两条电源线上产生同相位的共模噪声。
图3:变压器高频电路中的寄生电容情况 图4:开关电路寄生电容
开关电源以其效率高、体积小、输出稳定性好的优点而迅速发展起来。但是,由于开关电源工作过程中的高频率、高di/dt和高dv/dt使得电磁干扰问题非常突出。国内已经以新的3C认证取代了CCIB和CCEE认证,使得对开关电源在电磁兼容方面的要求更加详细和严格。如今,如何降低甚至消除开关电源的EMI问题已经成为全球开关电源设计师以及电磁兼容(EMC)设计师非常关注的问题。开关电源产生电磁干扰最根本的原因,就是其在工作过程中产生的高di/dt和高dv/dt,它们产生的浪涌电流和尖峰电压形成了干扰源。工频整流滤波使用的大电容充电放电、开关管高频工作时的电压切换、输出整流二极管的反向恢复电流都是这类干扰源。开关电源中的电压电流波形大多为接近矩形的周期波,比如开关管的驱动波形、MOSFET漏源波形等。对于矩形波,周期的倒数决定了波形的基波频率;两倍脉冲边缘上升时间或下降时间的倒数决定了这些边缘引起的频率分量的频率值,典型的值在MHz范围,而它的谐波频率就更高了。这些高频信号都对开关电源基本信号,尤其是控制电路的信号造成干扰。本文首先结合并联谐振倍压变换器对开关电源的整体EMI情况包括干扰源、耦合路径以及敏感电路进行了确定和分析,并同时阐述了开关电源EMI产生的机理,在此基础上提出了开关电源EMC设计的实现以及在EMC设计过程中应着重处理的技术环节,最后提出并总结了解决开关电源电磁兼容问题的方法和思路和开关电源EMI抑制技术。
图1:SMPS的基本组成
一:SMPS的基本构成:
如图1所示,交流电经整流桥进入电源的核心部分--用以进行功率转换的DC/DC变换器,此外还有启动、过流与过压保护、噪声滤波等电路,这些电路可统称为控制电路。输出采样电路(R1、R2)检测输出电压变化,并与基准电压Uf比较,误差电压经过放大及脉宽调制(PWM)电路,再经过驱动电路控制功率器件的占空比,从而达到调整输出电压大小的目的。
二:开关电源EMI的分析:
EMI是Electro Magnetic Interference的缩写,有传导干扰和辐射干扰两种。传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络。在高速PCB及系统设计中,高频信号线、集成电路的引脚、各类接插件等都可能成为具有天线特性的辐射干扰源,能发射电磁波并影响其他系统或本系统内其他子系统的正常工作。开关电源的EMI特点比较明显,其电压、电流变化率很高,电源线路内的dv/dt、di/dt较大,产生很大的浪涌电压、浪涌电流和其它杂散噪声,同时向外辐射强电场和强磁场;干扰的主要形式为传导干扰和近场干扰;干扰源主要集中在功率开关器件以及与之相连的散热器和高频变压器且地线电流严重;PCB分布参数的提取和近场干扰预估的难度较大。现结合SMPS结构(图1)及并联谐振倍压变换器(图2)为例介绍开关电源EMI的干扰源的主要位置及干扰机理。
图2:某DC/DC功率变换器EMI示意图
1、 输入整流回路的噪声:
如图2中一次整流回路所示,基本整流器的整流过程是产生EMI最常见的原因。这是因为正弦波电源通过由D1~D4组成的整流器B后变成单向脉动电流已
- EMI噪声分析及EMI滤波器的设计(10-07)
- 开关电源的EMC设计(09-15)
- 多层线路板在开关电源电路中应用(11-07)
- 双激式开关电源变压器存在的风险(01-20)
- 开关电源的分类及应用(02-17)
- 开关电源控制环路如何设计(04-11)