改善PWM电源控制器低负载运行缓冲放大器
时间:11-21
来源:3721RD
点击:
该设计采用两组互补输出(A 至 D)驱动一个全桥功率变换器,用相对于 A 和 B 的相移输出 C 和 D 控制功率。制造商的数据手册有这方面的详细说明(参考文献 1)。但是,当用于轻负载并构置电流模式控制时,在起动条件下控制器的滞后输出 C 和 D 上会产生不对称宽度的脉冲。参考文献 2 对这个问题及变通方法有完整的描述。
然而,当该 IC 用于其它电路仪器时,这种变通方法却会引起其它问题。图 1 取自参考文献 2,图中显示的是将 UCC3895 用于峰值电流模式控制电路的部分图解,其中 R1 作为一个上拉电阻,为电压斜升提供直流偏移。但是,在斜升波形相当大部分中,二极管 D1 并不导通,因而切掉了 IC1 管脚 3 上相当一部分斜升电压,缩窄了电源的动态范围。
图2 是另一种解决方法,它需要外接元件,但能保持提供给 IC1 管脚 3 的全部斜升电压幅度,并提供参考文献 1 所需的大约 1V DC 偏压。图中晶体管 Q1 和 Q2、电阻 R1 和 R2 以及 LED D3 共同构成一个射极跟随放大器,用于为 IC1 提供斜升电压,管脚 7 跨接定时电容 C1。这样用一个有直流偏压的锯齿波驱动 IC1 的斜波输入,从而使电路在无负载直至满负载输出电流整个范围内都能以可靠的电流模式运行。二极管 D3 是一支黄色 LED,它的作用是一个 1.7V 的电平转换,不会引入任何实际信号损失。图中未显示的元件值需根据应用情况而定。
- 大电流/高速LED驱动器彻底改变了PWM调光(08-19)
- 准固定频率滞环PWM电流模式控制方法的研究(12-07)
- 大电流/高速 LED 驱动器给 PWM 调光带来了突破性的改革(01-06)
- 取替RC采用硅振荡器定时更胜一筹(02-17)
- 解析PWM开关稳压电源尖峰干扰(07-19)
- 基于SPWM的交流稳压电源设计方案(09-15)